Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
100%
|
|
tom R. 6, nr 27
26-30
PL
Alginiany są biopolimerami, które ze względu na swoje właściwości biologiczne wykorzystywane są do modyfikacji implantów syntetycznych. W pracy opisano próbę otrzymania kompozytowego implantu złożonego z włókien węglowych i alginianu. Implanty biopolimer-włókno węglowe otrzymano stosując roztwór alginianu sodu, który zelowano przy użyciu kationów wapnia. Materiały scharakteryzowano stosując mikroskopię SEM oraz spektroskopię wibracyjną w podczerwieni.
EN
Alginates are biopolymers which owing to their biological properties are applied to modify synthetic implant materials. In the work an attempt to prepare the composite implant material consisting of carbon fibre and alginate is described. Biopolymer-carbon fibre implants have been obtained by gelation of sodium alginate solution with calcium cations. Materials have been characterized by scanning electron microscopy (SEM) and vibrational spectroscopy in the IR region.
2
63%
PL
Otrzymano włókna alginianowe zawierające w swojej budowie rozproszony bioaktywny nanododatek hydroksyapatytu. Włókna te charakteryzują się wysokimi właściwościami sorpcyjnymi oraz wartością wytrzymałości właściwej powyżej 20cN/tex odpowiednią do przerobu na kompozyty przeznaczone do zastosowań medycznych.
EN
Alginate fibres containing in their structure a dispersed bioactive hydroxyapatite nano-additive were obtained. These fibres are characterized by high sorption properties and a tensile strength of over 20cN/tex, which is adequate for the production of composites designed for medical purposes.
EN
Biomaterials basing on natural polysaccharides, i.e. hiauronic acid, alginate, chitosane are an alternative for already applied bioresorbable synthetic materials basing on synthetic polyhydroxyacids. Their main advantages are good accessibility, low cost, easy forming and high biocompatibility. Additionally, they are a perfect matrix for bioactive nanoparticles i.e. hydroxyapatite (HAp), tricalcium phosphate (TCP) and silica (SiO2). The work presents results of research on nanocomposite consisting of chitosane matrix (CS) modified with a nanofiller, which was natural montmorillonite (MMT). Nanocomposite foils were produced by the casting method. In order to induce better biocompatibility, the surface of the CS/MMT composite was neutralized (bath in NaOH solution). The nanocomposite foils were subjected to a bioactivity test by incubation in SBF at 37oC for 7 days. It was observed that the CS/MMT material surface showed a local supersaturation, which was a result of apatite nucleation. The CS/MMT nanocomposites were investigated using FT-IR (Fourier Transform Infrared Spectroscopy) and Fourier Raman Spectroscopy. FTIR measurements of the samples were carried out on the transmission and reflection modes. The FTIR microscopy spectra were collected using Bio-Rad Excalibur with ATR attachment as well as microscope UMA500 equipped with MCT detector. Spectra were measured at 4 cm-1 resolution in the region from 4000 cm-1 to 600 cm-1. FT-Raman spectra were obtained using a FTS6000 Bio-Rad spectrometer with Ge detector. The samples were excited with a Nd-YAG laser (1064nm). Additional all materials in all steps experiments were observed under Scanning Electron Microscopy (Nova NanoSEM). Vibrational spectroscopy methods (FT Raman and FTIR) can be used for investigation of nanocomposite foils basing on biopolymers. High sensitivity the applied spectroscopy techniques show that in the result of the neutralization of CS/MMT foil (via incubation in NaOH solution) the biopolymer chain breaks. This phenomena is visible by intensity ratio between COC/ COH bands. Increase of reactivity of chitosane chain lead to entrapment of PO43-, which is the origin of the apatite forms nucleation process. Chemical treatment of the nanocomposite foils, i.e. NaOH washes influences their chemical structure and microstructure. Neutralisation of the foils is the first processing stage which precedes the potential use of CS/MMT foils in biomedical applications. The materials show a tendency to apatite crystallisation which may support regeneration of damaged bone tissue. The applied spectroscopic methods allowed to observe changes in the whole volume of the sample. Individual ATR measurements taken at various spectral ranges and penetration depths allow to observe subtle changes in the polymer matrix caused by chemical treatment (NaOH and SBF incubation). Results of the investigations indicate that in the CS/ MMT systems new chemical bonds and related to them vibrations appear. Quantity and quality of the interactions is related to characteristics of the nanoparticle and the presence of forming apatite structures.
EN
Biomaterials basing on natural polysaccharides, i.e. hiauronic acid, alginate, chitosane are an alternative for already applied bioresorbable synthetic materials basing on synthetic polyhydroxy acids. Their main advantages are good accessibility, low cost, easy forming and high biocompatibility. Additionally , they are a perfect matrix for bioactive nanoparticles i.e. hydroxy apatite (HAp), tricalcium phosphate (TCP) and silica (SiO2). The work presents results of research on nanocomposite consisting of chitosane matrix (CS) modified with a nanofiller, which was natural montmorillonite (MMT). Nanocomposite foils were produced by the casting method. In order to induce better biocompatibility, the surface of the CS/MMT composite was neutralized (bath in NaOH solution). The nanocomposite foils were subjected to a bioactivity test by incubation in SBF at 37oC for 7 days. It was observed that the CS/ MMT material surface showed a local supersaturation, which was a result of apatite nucleation. The CS/ MMT nanocomposites were investigated using FT-IR ( Fourier Transform Infrared Spectroscopy) and Fourier Raman Spectroscopy. FTIR measurements o f the samples were carried out on the transmission and reflection modes. The FTIR microscopy spectra were collected using BioRad Excalibur with ATR attachment as well as microscope UMA500 equipped with MCT detector. Spectra were measure at 4 cm -1 resolution in the region from 4 000 cm -1 to 600 cm -1 . FT-Raman spectra were obtained using a FTS 6000 Bio-Rad spectrometer with Ge detector. The samples were excited with a Nd-YAG laser (1064nm). Additional all materials in all steps experiments were observed under Scanning Electron Microscopy (Nova Nano SEM). Vibrational spectroscopy methods (FT Raman and FTIR) can be used for investigation of nanocomposite foils basing on biopolymers. High sensitivity the applied spectroscopy techniques show that in the result of the neutralization of CS/ MMT foil (via incubation in NaOH solution the biopolymer chain breaks. This phenomena is visible by intensity ratio between COC/COH bands. Increase of reactivity of chitosane chain lead to entrapment of PO4+3-, which is the origin of the apatite forms nucleation process. Chemical treatment of the nanocomposite foils, i.e. NaOH washes in fluences their chemical structure and microstructure. Neutralisation of the foils is the first processing stage which precedes the potential use o fCS/ MMT foils in biomedical applications. The materials show a tendency to apatite crystallisation which may support regeneration of damaged bone tissue. The applied spectroscopic methods allowed to observe changes in the whole volume of the sample. Individual ATR measurements taken at various spectral ranges and penetration depths allow to observe subtle changes in the polymer matrix caused by chemical treatment (NaOH and SBF incubation). Results of the investigations indicate that in the CS/ MMT systems new chemical bonds and related to them vibrations appear. Quantity and quality of the interact ions is related to characteristics of the nanoparticle and the presence of forming apatite structures.
PL
Nanocząstki modyfikatora MMT, pochodzące z naturalnego złoża (Jelesovy Potok), poddano jednoetapowej obróbce chemicznej (interkalacja etylenodiaminą, MMT-amina) lub obróbce dwuetapowej, tj. chemicznej, a następnie termicznej (karbonizacja nanonapełniacza, MMT-amina→ MMT-karbo). Celem tych zabiegów było osiągnięcie lepszej kompatybilności pomiędzy nanonapełniaczem a osnową polimerową, PAN. Wpływ modyfikacji na postać nanonapełniacza określono poprzez badania struktury (XRD) i mikrostruktury (SEM) montmorylonitu i jego pochodnych (interkalowanego MMT-amina i eksfoliowanego MMT-karbo). Wpływ zastosowanych modyfikacji na wielkość cząstek MMT zbadano przy użyciu metody DLS. Stwierdzono, że postać nanonapełniacza (wcześniejsza obróbka MMT) wpływa na poprawę dyspersji fazy nanometrycznej w osnowie polimerowej PAN. Nanokompozyty polimerowe z poliakrylonitrylu (PAN), w których jako nanonapełniacz zastosowano glinokrzemian warstwowy - montmorylonit (MMT) otrzymano metodą odlewania. Największą trwałością termiczną charakteryzował się nanokompozyt, gdzie jako nanonapełniacz zastosowano interkalowany aminą MMT (TG/DSC). Badania mechaniczne wykazały większą kompatybilność nanonapełniacza eksfoliowanego (MMT-karbo) do matrycy polimerowej, powodującą wzrost wytrzymałości tego nanokompozytu (testy rozciągania).
EN
Aim of this work was fabrication of a polymer-matrix nanocomposite based on polyacrylonitrile (PAN) and a layered silicate (phyllosilicate) - montmorillonite (MMT) as nanofiller. Nanoparticles of the filler, which originated from a natural deposit, were subjected to a chemical treatment (ethylenediamine, MMT-amine), or thermal treatment (nanofiller carbonisation, MMT-amine→ MMT-carbo) which objective was to reach better compatibility between the matrix and the nanofiller. In order to improve compatibility of MMT-type particles with a polymer matrix they are subjected to chemical treatments which consist in an introduction of cations of alkylamonium or alkylophosphonate salts between stocks of aluminasilicate piles. The introduction of organic matter between the stocks of piles is called intercalation. The additional objective of this treatment, apart form inducing organophilic character of the particles (i.e. formation of organoclays), is increase of an interpile spacing. Better results of nanocomposite strengthening with MMT-type particles are achieved when an organoclay undergoes exfoliaion i.e. when it completely loses layered structure, and the nanofiller plates are separated with the polymer chains. Usually both above mentioned phenomena occur simultaneously i.e. part of the piles is intercalated, while the rest is completely delaminated (exfoliated). In such case a flocculated nanocomposite is produced. Montmorylonite fraction was separated by sedimentation from bentonite from Jelesovy Potok deposit (Slovakia). Particle size distribution was determined by DLS method using NanoSizer Nano-ZS apparatus. The second type of the nanofiller was montmorylonite intercalated with secondary amine. The main purpose of this treatment was hydrophobisation of MMT piles, which was expected to improve a compatibility of the nanofiller with the polymer matrix. The intercalation process was carried out by mixing MMT with the secondary amine (proportion MMT:amine; 1:2). The third type of the nanofiller, was produced by thermal treatment of MMT-amine at 1000°C for 15 min in oxidising atmosphere. Influence of the treatment method on the nanofiller characteristics was determined by structure (XRD), and microstructure (SEM) analysis of MMT and its derivatives. MMT-PAN nanocomposites were produced by casting method. It was observed, that a form of the nanofiller influenced efficiency of dispersion of the nanometric phase within the polymer matrix, as well as the thermal stability of the nano-composite (TG/DSC). Mechanical tests (stretching) revealed better compatibility of an exfoliated nanofiller (MMT-carbo) with the polymer matrix, which resulted in increase of the nanocomposite strength.
7
Content available remote Polimerowe kompozyty gradientowe dla zastosowań medycznych
51%
PL
W pracy otrzymano i scharakteryzowano polimerowe kompozyty gradientowe. Wytworzone materiały charakteryzowały się gradientem porowatości (tworzącym się in situ), gradientem trwałości w warunkach in vitro oraz gradientem właściwości mechanicznych. Kompozyty gradientowe otrzymano przez dodatek do resorbowalnej osnowy kopolimeru laktydu i glikolidu (PGLA) biopolimeru - alginianu sodu w postaci proszku (NaAlg). Metodą odlewania otrzymano folie kompozytowe o różnym udziale wagowym 27%). Na podstawie przeprowadzonych badań degradacji (trwałości w warunkach in vitro), pomiarów profilometrycznych, testów mechanicznych oraz obserwacji mikroskopowych zaprojektowano i wykonano kompozytowe struktury gradientowe. Następnie materiały w formie kostek o różnym udziale wagowym modyfikatora podda-no badaniom degradacji, stosując jako medium immersyjne płyn Ringera. Stopień degradacji kompozytów określono na podstawie zmian prędkości fali ultradźwiękowej oraz pH medium. Stwierdzono, że szybkość degradacji kompozytów zależy od udziału wagowego porogenu oraz od kolejności ułożenia warstw różniących się udziałem wagowym modyfikatora w kompozycie gradientowym.
EN
Functional gradation is one of characteristic feature of living tissue. Bioinspired materials open new approaches for manufacturing implants for bone replacement. Different routes for new implant materials are presented using the principle of functional gradation. In this paper an artificial biomaterial for bone replacement has been developed by building a graded structure consisting of resorbable polymer matrix modified with biopolymer powder. For preparation graded materials with different in situ porosity and in vitro durability diversification biopolymer in form of sodium alginate (NaAlg, powder) was introduced into resorbable polymer matrix of lactide-co-glicolide (PGLA). Than composite films were cast from polymer solution with deferent mass fraction of modifier (7-27%). On the basis of degradation tests (durability in in vitro conditions), profile measurements, mechanical tests and microscopic observations composite structures (cubical shape with different arrangement of composite layers) were designed. Two types of porosity gradients were obtained. These graded materials with different mass fraction of sodium alginate were investigated during the durability tests in Ringer solution. Degradation degree was defined on the basis of velocity changes of the ultrasonic wave and pH of the immersion medium. It was found that composite degradation rate depends on porogene mass fraction and it was also connected with its arrangement way in polymer matrix.
8
45%
PL
Badaniu poddano serie próbek kompozytowych o osnowie polimerowej (terpolimer PTFE-PVDF-PP), zawierającej włókna węglowe. Próbki kompozytowe różniły się sposobem rozprowadzenia włókien w osnowie. Badano cytotoksyczność polimeru oraz utworzonych z niego materiałów kompozytowych, na ludzkiej linii komórek nabłonkopodobnych raka płuc (ATCC CCL 185) - A549. Analizowano zmiany ilościowe i morfologiczne komórek. W celu określenia ilości martwych komórek zastosowano metodę barwienia błękitem trypanu. Wykazano, że zarówno polimer jak i jego kompozyty z włóknem węglowym, nie wykazują toksycznego wpływu na komórki linii A549
EN
The series of polymer matrix composites (terpolymer PTFE-PVDF-PP) containing carbon fibres have been examined. Composite samples had different spatial distributions of carbon fibres in their matrices. The cytotoxicity of polymer and its composites was examined with use of human line of epithelium-like cells of lung cancer (ATCC CCL 185) - A549. Quantitative and morphological changes of cells have been analyzed. The number of deceased cells was determined using the trypan blue dyeing method. It has been shown that neither polymer nor its composities have any toxic effects on cells of A549 line
PL
Przedmiotem badań są próbki różniące się parametrami mikrostrukturalnymi (chropowatość, wielkość i kształt porów) oraz energią powierzchniową. Próbki wytworzono z polimeru, do którego wprowadzono włókna węglowe lub włókna alginianowe. Różnice odpowiedzi komórkowej na powierzchnię polimeru modyfikowanego fazą włóknistą dotyczą zarówno przeżywalności komórek (fibroblasty, osteoblasty) jak poziomu wydzielanego przez nie kolagenu. W oparciu o wyniki przedstawione w pracy można stwierdzić, że zastosowanie włókien do modyfikacji polimeru stanowić może przydatną metodę modyfikowania powierzchni wykorzystywaną w konstrukcji materiałów stosowanych do sterowanej regeneracji tkanek
EN
The aim of this study was to examine the samples with different surface topography and surface energy. Experimental materials were made of polymer, to which carbon or alginate were introduced. Differences in cellular response to polymer surfaces modified with fibrous phase concern both variability (fibroblasts and osteoblasts) and the level of their collagen production. Based on obtained results it may be concluded that application of fibres for polymer modification may become a useful method of construction functionality to the surface, suitable for construction of materials applicable in controlled tissue regeneration
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.