Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote On exposed points and extremal points of convex sets in ℝⁿ and Hilbert space
100%
|
|
nr 2
117-129
EN
Let 𝕍 be a Euclidean space or the Hilbert space ℓ², let k ∈ ℕ with k < dim 𝕍, and let B be convex and closed in 𝕍. Let 𝓟 be a collection of linear k-subspaces of 𝕍. A set C ⊂ 𝕍 is called a 𝓟-imitation of B if B and C have identical orthogonal projections along every P ∈ 𝓟. An extremal point of B with respect to the projections under 𝓟 is a point that all closed subsets of B that are 𝓟-imitations of B have in common. A point x of B is called exposed by 𝓟 if there is a P ∈ 𝓟 such that (x+P) ∩ B = {x}. In the present paper we show that all extremal points are limits of sequences of exposed points whenever 𝓟 is open. In addition, we discuss the question whether the exposed points form a $G_{δ}$-set.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.