Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Global satellite gravity measurements provide unique information regarding gravity field distribution and its variability on the Earth. The main cause of gravity changes is the mass transportation within the Earth, appearing as, e.g. dynamic fluctuations in hydrology, glaciology, oceanology, meteorology and the lithosphere. This phenomenon has become more comprehensible thanks to the dedicated gravimetric missions such as Gravity Recovery and Climate Experiment (GRACE), Challenging Minisatellite Payload (CHAMP) and Gravity Field and Steady-State Ocean Circulation Explorer (GOCE). From among these missions, GRACE seems to be the most dominating source of gravity data, sharing a unique set of observations from over 15 years. The results of this experiment are often of interest to geodesists and geophysicists due to its high compatibility with the other methods of gravity measurements, especially absolute gravimetry. Direct validation of gravity field solutions is crucial as it can provide conclusions concerning forecasts of subsurface water changes. The aim of this work is to present the issue of selection of filtration parameters for monthly gravity field solutions in RL06 and RL05 releases and then to compare them to a time series of absolute gravimetric data conducted in quasi-monthly measurements in Astro-Geodetic Observatory in Józefosław (Poland). The other purpose of this study is to estimate the accuracy of GRACE temporal solutions in comparison with absolute terrestrial gravimetry data and making an attempt to indicate the significance of differences between solutions using various types of filtration (DDK, Gaussian) from selected research centres.
EN
In this study, several variants create and choose of a local quasi-geoid model in Poland have been considered. All propositions have a source in European Gravimetric Geoid models – EGG2008 and EGG2015, which are purely gravimetric models of reference surface. In the course of this work, each model has been analyzed in various ways: without any corrections, by parallel shifting of residuals, by the 7-parameter conformal transformation and by fitting residuals by 4- and 5-parameter trigonometric polynomials. Eventual corrections were based on points of national GNSS/levelling networks (EUVN, EUVN_DA, POLREF, EUREF and ASG-EUPOS eccentric points). As a final result of this study, a comparison of the accuracy of selected models has been carried out by RMSE statistics and maps showing spatial distribution of residuals and histograms. Validation has shown that the maximum achievable accuracy of the EGG models is approximately 2 cm for the ETRF2000 reference system and approximately 8 cm for ETRF89. In turn, fitting with the use of different mathematical methods results in an improvement of the standard deviation of residues to the level of 1.3–1.4 cm. The conclusions include an evaluation of considerations for and against the use of models based only on EGG realizations and, on the other hand, fitted to the points of Polish vertical network. Its usefulness is strictly connected with needs of the definition of up to date quasi-geoid model for the new realization of heights system in Poland, based on EVRF2007 frame.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.