Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Auxetic materials are materials exhibiting a negative Poisson’s ratio in one of their planes. This phenomenon has been studied in various materials. Zeolites are crystalline substances whose structure is characterised by the framework of linked tetrahedra, each consisting of four oxygen atoms surrounding a cation. The resulting interstitial spaces make them efficient for use as adsorbents and molecular sieves, and many studies have been focused on this aspect. Some of these zeolites may exhibit auxeticity at least in one of their planes. THO (and similar systems, such as NAT and EDI) together with the all-silica equivalent of these have been studied extensively via static simulations for their negative Poisson’s ratio in the (001) plane. In this paper a study of the all-silica equivalent of THO has been carried out via both static and dynamic simulations using the same force-field, where the system was subjected to stress along the x direction. The hypothesised semi-rigid mechanism of deformation, proposed by Grima et al. was then projected over this framework. The results obtained confirmed auxeticity along this plane by means of the COMPASS force-field, in both static and dynamic studies and compared well with the proposed mechanism of semi-rigid rotating polygons. It also showed that as the Young’s modulus of this mechanism increases other mechanisms of deformation increase in importance.
EN
Auxetic materials exhibit the very unusual property of becoming wider when stretched and narrower when compressed, – they have a negative Poisson’s ratio. This unusual behaviour is the source of many desired effects in the materials’ properties and it is therefore, no wonder that auxetics are described as being superior to conventional materials in many practical applications. Here we make use of force-field based molecular modelling simulations in order to investigate the mechanical properties of polypehyleacetylene systems known as (n, m)-flexyne and (n, m)-reflexyne in an attempt to extend the existing knowledge there is regarding these systems. These systems have already attracted considerable consideration since negative on-axis Poisson’s ratios have been discovered for the reflexynes. We first developed a methodology for the modelling and property determination of flexyne and reflexyne network systems which we validated against existing published data. Then, extended the study to prove the simulated results were independent of the modelling methodology or the force-field used. In particular, we showed that on-axis auxeticity in the reflexynes is a force-field independent property, i.e. a property which is not an artefact of the simulations but a property which is likely to be present in the real materials if these were to be synthesised. We also studied and reported the shear behaviour of these systems were we show that the flexynes and reflexynes have very low shear moduli, a property which regrettably limits the prospects of these systems in many practical applications. Finally we examine the in-plane off-axis mechanical properties of the systems and we report that in general, these mechanical properties are highly dependent on the direction of loading. We also find that the auxeticity exhibited by the reflexynes on-axis is lost when these systems are loaded off axis since the Poisson’s ratios becomes positive very rapidly as the structure is stretched slightly off-axis (e.g. 15deg off-axis). This is once again of great practical significance as it highlights another major limitation of these systems in their use as auxetics.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.