The current study investigated anaerobic biodigestion (AD) of livestock manure, including camel dung (CD) and sheep manure (SM) mixed with tomato and rumen at different mixed ratios under mesophilic (24–34°C) conditions. The study yielded successful results, as the process was able to produce sustainable bioenergy. Predicted biogas data was acquired through fundamental mathematical calculations using SPSS statistical analysis by nonlinear regression. Three kinetic models, namely the modified Gompertz, Logistic, and Transference models, were used for simulating the daily biogas produced from the examinations, and model parameters were determined simultaneously. The three models performed well in AD simulations, with high correlation coefficient values (R-squared) and low root mean square error (RMSE), showing a significant link between experimental data and model parameters. However, modified Gompertz demonstrated an improved fit in the simulation of the measurements, as it could accurately represent the curves in the plots, with the highest R-squared of 0.987 compared to Logistics 0.981 and Transference models 0.933, and the lowest RMSE was 0.356 compared to 0.432, and 0.812, respectively. This work suggested that a modified Gompertz model is suitable for estimating the biogas yield potential. The findings also show that rumen, tomato, and control biodigesters operating in mesophilic environments are dependable choices for producing biogas.
Rumen accumulation in slaughterhouses produced by sheep is a significant issue that endangers human life and the ecosystem. Use of rumen appears to improve biogas production due to a high rate of hydrolytic bacteria. Hydrolytic bacteria are required for the breakdown of organic matter and biogas. This study proposes that combined camel and sheep manure with tomatoes and Rumen be co-digested under mesophilic conditions by anaerobically fermenting in a batch system to produce biogas. In the cross-sectional area of the study at the same operating conditions, biogas volume was measured for a period of 14 days, and on the last day, methane concentrations were measured. The study found that the rumen sample had the highest methane concentration, measuring 69.30%. Conversely, the control mixture without any additional co-substance had the lowest percentage of methane. Additionally, the tomato sample showed a slightly higher methane concentration of 0.1% compared to the control mixture. The study results show that efficient biogas production increased with rumen and tomatoes addition to manure compared to the control bio-digester sample. This demonstrates how waste can be transformed into wealth, which can be used to reduce costs for the community.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.