The fracture of shape memory alloys is distinct from that of conventional metals, owing to the coexistence and interaction of multiple special features such as martensitic transformation, dislocation-induced plasticity, thermomechanical coupling and others. In this paper, the impact of thermomechanical behavior upon the crack initiation of a NiTi shape memory alloy under Mode I loading is investigated numerically and verified experimentally. A constitutive model incorporating phase transformation, plasticity and thermomechanical coupling is established. Via backward Euler integration and finite-element implementation, the longitudinal strain, martensite volume fraction and temperature field in the vicinity of the crack tip are furnished. The effects of grain size and loading rate on J-integral are revealed. The grain size dependence of crack initiation is non-monotonic. For the samples with grain sizes of 1500 nm, 18 nm and 10 nm, the shielding effect takes place in front of the crack. Additionally, the anti-shielding effect is detected for samples with grain sizes of 80 nm and 42 nm. The parametric study shows that loading rate imposes limited influence on J-integral, which is attributed to a small scale transformation. The decrement of yield stress and the increment of transformation hardening modulus can alleviate the anti-shielding effect and arouse the shielding effect upon crack initiation. The presented results shed light on the design and fabrication of high toughness phase transformable materials.
Tunnel lay-by spacing is directly related to traffic safety and engineering investment. Nevertheless, its mechanism is not clear, and the rationality of the exiting norms with respect to tunnel lay-by spacing needs to demonstrate. A calculation model for tunnel lay-by spacing was derived by considering the headway and the physical kinematics of the two vehicles chasing and encountering. With it, the influence of various parameters on lay-by spacing were analysed and the rationality of the model were discussed through comparing with existing norms. Results shows longitudinal gradient rate, daily average traffic flow, rolling resistance coefficient, posted speed limit are significant to determine the lay-by spacing, and the most important parameter is longitudinal gradient rate. Existing tunnel lay-by spacing norm values are not reasonable enough, either too strict or too loose. These findings provide scientific support for how to select tunnel lay-by spacing value, which can improve tunnel traffic safety and make engineering investment reasonable.
In this paper, a three-dimensional micromechanical-based constitutive model is proposed to describe the temperature-dependent performance of a cyclic deformed superelastic NiTi shape memory alloy. The dominant texture of the specimen is prescribed as <111> direction along the longitudinal direction. Apart from martensitic transformation, various mechanisms regarding superelastic degradation are taken into consideration. In order to be extended from the single-crystal scale to the polycrystalline version, the constitutive model is implemented into finite element software. It is verified that the measured cyclic response of a superelastic NiTi is well reproduced by the presented approach. Furthermore, the predicting capability of the proposed model is verified by simulating the mechanical behavior of NiTi tube subjected to cyclic bending.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.