Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote On the increasing solutions of the translation equation
100%
EN
Let M be a non-empty set endowed with a dense linear order without the smallest and greatest elements. Let (G,+) be a group which has a non-trivial uniquely divisible subgroup. There are given conditions under which every solution F: M×G → M of the translation equation is of the form $F(a,x) = f^{-1}(f(a) + c(x))$ for a ∈ M, x ∈ G with some non-trivial additive function c: G → ℝ and a strictly increasing function f: M → ℝ such that f(M) + c(G) ⊂ f(M). In particular, a problem of J. Tabor is solved.
EN
Let K denote the set of all reals or complex numbers. Let X be a topological linear separable F-space over K. The following generalization of the result of C. G. Popa [16] is proved. Theorem. Let n be a positive integer. If a Christensen measurable function f: X → K satisfies the functional equation $f(x + f(x)^ny) = f(x)f(y)$, then it is continuous or the set {x ∈ X : f(x) ≠ 0} is a Christensen zero set.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.