Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Single electron devices (SEDs) are candidates to become a keystone of future electronics. They are very attractive due to low power consumption, small size or high operating speed. It is even possible to assure compatibility with present CMOS technology when natural potential fluctuations introduced by dopant atoms are used to create quantum dots (QD). However, the main problem of this approach is due to the randomness of dopant distribution which is characteristic for conventional doping techniques. This leads to scattered characteristics of the devices, which precludes from using them in the circuits. In these work we approach the problem of correlating the distribution of QD's with the device characteristics. For that, we investigate with a Kelvin probe force microscope (KFM) the surface potential of Si nanodevice channel in order to understand the potential landscape. Results reveal the features ascribable to individual dopants. These findings are supported also by simulation results.
EN
Single charge manipulation for useful electronic functionalities has become an exciting and fast-paced direction of research in recent years. In structures with dimensions below about 100 nm, the physics governing the device operation turn out to be strikingly different than in the case of larger devices. The presence of even a single charge may completely suppress current flow due to the basic electronelectron repulsion (so called Coulomb blockade effect) [1]. It is even more exciting to control this effect at the level of single-electron/single-atom interaction. The atomic entity can be one donor present in silicon lattice with a Coulombic potential well. In principle, it can accommodate basically a single electron. We study the electrical behavior of nanoscale-channel silicon-on-insulator field-effect transistors (SOI-FETs) that contain a discrete arrangement of donors. The donors can be utilized as "stepping stones" for the transfer of single charges. This ability opens the doors to a rich world of applications based on the simple interplay of single charges and single atoms, while still utilizing mostly conventional and well established fabrication techniques. In this work, we distinguish the effects of single-electron transport mediated by one or few dopants only. Furthermore, we show how the single-electron/single-donor interaction can be tuned by using the external biases. We demonstrate then by simulation and experiment the feasibility of single-electron/bit transfer operation (single-electron turnstile).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.