Węglowe ogniwa paliwowe (DCFC), intensywnie rozwijane w ostatniej dekadzie, oferują generację energii elektrycznej z potencjalnie znacznie wyższą sprawnością niż obecnie uzyskiwana w elektrowniach węglowych. Istniejąca technologia elektrolitów stałotlenkowych jest jedną z platform technologicznych umożliwiających implementację koncepcji ogniw paliwowych zasilanych pyłem węglowym. W artykule podsumowano termodynamiczne i elektrochemiczne zasady działania technologii DC-SOFC. Dokonano przeglądu aktualnego stanu i potencjału rozwoju technologii. Wskazano kluczowe zagadnienia badawcze mające wpływ na jej rozwój w najbliższym czasie.
EN
Direct carbon fuel cells (DCFC), developed intensively in the last decade, offer electric current generation with potentially much higher efficiency than currently achieved in coal-fired power plants. The existing planar solid oxide fuel cell technology is one of several possible fuel cell technology platforms enabling implementation of DCFC, fuelled with pulverised coal. The thermodynamic and electrochemical principles of DC-SOFC technology are summarised in the paper. The current technology development status is reviewed and future potential of technology is discussed. Key research problems influencing the development of the technology in future were stated.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The first Polish micro-combined heat and power unit (micro-CHP) with solid oxide fuel cells (SOFC) was designed and constructed in the facilities of the Institute of Power Engineering in Warsaw. The system was launched in September 2015 and is under investigation. At the current stage the unit is customized to operate on a pre-treated biogas. Adaptation of the fuel processing system, which is based on a steam reformer, makes it possible to utilize other gaseous and liquid fuels, including natural gas. The electric and thermal output of the system, up to 2 kW and about 2 kW, respectively, corresponds to the typical requirements of a detached dwelling or a small commercial site. Functionality of the system was increased by engaging two separate start-up modules, which are used for preheating the system from a cold state to the nominal working conditions. The first module is based on a set of electric heaters, while the second module relies on an additional start-up burner. The startup of the system from ambient conditions up to a thermally self-sufficient stage takes about 7 hours using the electric preheaters mode. Output residual heat was used to heat water to a temperature of about 50°C. The temperature of the flue gases at the inlet to the hot water tank was measured at approximately 300°C. Steam reforming of the biogas was performed by delivering deionized water to the steam reformer in order to maintain the S/C ratio at a range of 2–3.5. Selected aspects of the design and construction as well the first operational experiences are presented and discussed. The numerical modeling methodology is presented as a complimentary tool for system design and optimization.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.