Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
ZnO thin layers were deposited on p-type silicon substrates by the sol-gel spin-coating method and, then, annealed at various temperatures in the range of 573-873 K. Photoluminescence was carried out in the temperature range of 20-300 K. All samples showed two dominant peaks that have UV emissions from 300 nm to 400 nm and visible emissions from 400 nm to 800 nm. Influence of temperature on morphology and chemical composition of fabricated thin layers was examined by XRD, SEM, FTIR, and Raman spectroscopy. These measurements indicate that ZnO structure is obtained for samples annealed at temperatures above 573 K. It means that below this temperature, the obtained thin films are not pure zinc oxide. Thus, annealing temperature significantly affected crystallinity of the thin films.
EN
Tris(8-hydroxyquinoline)aluminium with poly(N-vinylcarbazole) (Alq₃:PVK) or polystyrene sulfonate (Alq₃:PSS) were deposited by spin-coating on glass and silicon substrates. SEM measurements show that relatively smooth thin films were obtained. Fourier transform infrared measurements were performed to confirm the composition of the samples. The optical properties of thin films containing Alq₃:PVK and Alq₃:PSS were characterised using absorption spectroscopy and spectroscopic ellipsometry. It was found that the absorption spectrum of Alq₃:PVK is characterised by four bands, while for Alq₃:PSS only three bands are visible. The photoluminescence of the studied thin layers shows a peak with a maximum at about 500 nm. Additionally, cyclic voltammetry of Alq₃ is also presented. Theoretical density functional theory calculations provide the insight into the interaction and nature of Alq₃:PVK and Alq₃:PSS excited states. Finally, the organic light-emitting diode (OLED) structure based on Alq₃:PVK was fabricated and showed strong electroluminescence with a green emission at 520 nm. The results of the device show that the ITO/PEDOT:PSS/Alq₃:PVK/Ca/Al system can be useful for the production of low-cost OLEDs with Alq₃:PVK as an active layer for future lighting applications.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.