The central limit theorem, the invariance principle and the Poisson limit theorem for the hierarchy of freeness are studied. We show that for given m ϵ N the limit laws can be expressed in terms of non-crossing partitions of depth smaller than or equal to m. For A = C[x], we solve the associated moment problems and find explicitly the discrete limit measures.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We find an analytic formulation of the notion of Hopf image, in terms of the associated idempotent state. More precisely, if π:A→Mn(C) is a finite-dimensional representation of a Hopf C*-algebra, we prove that the idempotent state associated to its Hopf image A′ must be the convolution Cesàro limit of the linear functional φ=tr∘π. We then discuss some consequences of this result, notably to inner linearity questions.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.