Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The paper deals with the problem of optimal material distribution inside the provided design area. Optimization based on deterministic and stochastic algorithms is used to obtain the best result on the basis of the proposed objective function and constraints. The optimization of the shock absorber is used as an example of the described methods. One of the main difficulties addressed is the manufacturability of the optimized part intended for the forging process. Additionally, nonlinear buckling simulation with the use of the finite element method is used to solve the misuse case of shock absorber compression, where the shape of the optimized part has a key role in the total strength of the automotive damper. All of that, together with the required design precision, creates the nontrivial constrained optimization problem solved using the parametric, implicit geometry representation and a combination of stochastic and deterministic algorithms used with parallel design processing. Two methods of optimization are examined and compared in terms of the total amount of function calls, final design mass, and feasibility of the resultant design. Also, the amount of parameters used for the implicit geometry representation is greatly reduced compared to existing schemes presented in the literature. The problem addressed in this article is strongly inspired by the actual industrial example of the mass minimization process, but it is more focused on the actual manufacturability of the resultant component and admissible solving time. Commercially accessible software combined with authors’ procedures is used to resolve the material distribution task, which makes the proposed method universal and easily adapted to other fields of the optimization of mechanical elements.
EN
The paper focuses on applying a Quantum Inspired Evolutionary Algorithm to achieve the optimization of 2D material containing two phases, 2H and 1T, of Molybdenum Disulphide (MoS2 ). The goal of the optimization is to obtain a nanostructure with tailored mechanical properties. The design variables describe the shape of inclusion made from phase 1T in the 2H unit cell. The modification of the size of the inclusions leads to changes in the mechanical properties. The problem is solved with the use of computed mechanical properties on the basis of the Molecular Statics approach with ReaxFF potentials.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.