In (Eu,Gd)Te semiconductor alloys a well known antiferromagnetic semiconductor compound EuTe is transformed into n-type ferromagnetic alloy. This effect is driven by the RKKY interaction via conducting electrons created due to substitution of Gd3+ for Eu2+ ions. It is expected that due to the high degree of electron spin polarization (Eu,Gd)Te can be exploited in new semiconductor spintronic heterostructures as a model injector of spin-polarized carriers. The (Eu,Gd)Te monocrystalline layers with Gd content up to 5 at. % were grown by MBE on BaF2 (111) substrates with either PbTe or EuTe buffer layers. The measurements of magnetic susceptibility and magnetization revealed that the ferromagnetic transition with the Curie temperature TC=11- 15 K is observed in (Eu,Gd)Te layers with n-type metallic conductivity. An analysis of the magnetization of (Eu,Gd)Te was carried out in a broad range of magnetic fields applied along various crystal directions both in- and out-of layer plane. It revealed, in particular, that a rapid low field ferromagnetic response of (Eu,Gd)Te layer is followed by a paramagnetic-like further increase towards the full saturatio
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.