Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Incorporating DC-DC boost converters in power flow studies
100%
EN
Power electronic interfaces (PEI) play an important role in future power systems. From planning and operation perspectives, there is a need to model PEIs for power flow applications. In this paper, precise modeling of a DC-DC boost converter for load flow analysis is presented, which can be generalized for other kinds of PEIs. As an application, the presented model is employed for uncertainty analysis of systems, considering uncertainty in wind power generation. The simulations are performed on a wind farm DC distribution network. The results demonstrate the robustness of the presented load flow algorithm.
2
100%
EN
Due to the new technologies introduced in smart grids, it is hard to forecast future load demands with deterministic values. This makes it essential to consider load demand uncertainty in power distribution planning (PDP) approaches. The purpose of this paper was to find an approach that can solve optimal integrated power distribution long-term planning under load demand uncertainty. A single objective function was used that considers costs of low and medium voltage feeders, distribution transformers (DT) and high voltage (HV) substations simultaneously. Imperialist competitive algorithm (ICA) was used to solve the optimization problem. The proposed approach was applied to a semi-real hypothetical test-case with geographical attributes. Normal distribution function was used to model load demand uncertainty and Monte Carlo simulation (MCS) technique was applied to solve optimal planning under uncertainty. MCS takes statistical data and gives statistical results. A technique was utilized to take a single solution from statistical results. Based on comparisons with deterministic approach, the proposed approach is capable of giving a robust solution.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.