Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote An accurate approximation of zeta-generalized-Euler-constant functions
100%
|
|
tom 8
|
nr 3
488-499
EN
Zeta-generalized-Euler-constant functions, $$ \gamma \left( s \right): = \sum\limits_{k = 1}^\infty {\left( {\frac{1} {{k^s }} - \int_k^{k + 1} {\frac{{dx}} {{x^s }}} } \right)} $$ and $$ \tilde \gamma \left( s \right): = \sum\limits_{k = 1}^\infty {\left( { - 1} \right)^{k + 1} \left( {\frac{1} {{k^s }} - \int_k^{k + 1} {\frac{{dx}} {{x^s }}} } \right)} $$ defined on the closed interval [0, ∞), where γ(1) is the Euler-Mascheroni constant and $$ \tilde \gamma $$(1) = ln $$ \frac{4} {\pi } $$, are studied and estimated with high accuracy.
2
Content available remote An asymptotic approximation of Wallis’ sequence
100%
|
|
tom 10
|
nr 2
775-787
EN
An asymptotic approximation of Wallis’ sequence W(n) = Πk=1n 4k 2/(4k 2 − 1) obtained on the base of Stirling’s factorial formula is presented. As a consequence, several accurate new estimates of Wallis’ ratios w(n) = Πk=1n(2k−1)/(2k) are given. Also, an asymptotic approximation of π in terms of Wallis’ sequence W(n) is obtained, together with several double inequalities such as, for example, $W(n) \cdot (a_n + b_n ) < \pi < W(n) \cdot (a_n + b'_n )$ with $a_n = 2 + \frac{1} {{2n + 1}} + \frac{2} {{3(2n + 1)^2 }} - \frac{1} {{3n(2n + 1)'}}b_n = \frac{2} {{33(n + 1)^{2'} }}b'_n \frac{1} {{13n^{2'} }}n \in \mathbb{N} $ .
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.