If is a family of filters over some set I, a topological space X is sequencewise -compact if for every I-indexed sequence of elements of X there is such that the sequence has an F-limit point. Countable compactness, sequential compactness, initial κ-compactness, [λ; µ]-compactness, the Menger and Rothberger properties can all be expressed in terms of sequencewise -compactness for appropriate choices of . We show that sequencewise -compactness is preserved under taking products if and only if there is a filter such that sequencewise -compactness is equivalent to F-compactness. If this is the case, and there exists a sequencewise -compact T 1 topological space with more than one point, then F is necessarily an ultrafilter. The particular case of sequential compactness is analyzed in detail.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.