In this study T6 heat treated 6063 aluminum alloys were used as substrate material. In order to form a bond between the substrate and the main coating, all samples were coated with Ni-Cr-Al powders. 8 wt% Yttria Stabilized Zirconia powders (YSZ) were coated with plasma spray technique. Thickness of YSZ was 150 m and bond coating was 36 m. XRD and SEM-EDS analyses were performed to characterize the coating layers. These YSZ coated and uncoated samples were subjected to wear testing under different spindle speed, loading and working distance. Wear test results were compared with the kinetic friction coefficients and weight loss values. Wear marks on YSZ coated and uncoated samples were investigated by SEM analysis. By coating with plasma spray technique, the wear resistance of Al alloys was increased without changing the friction coefficient. It was found that spindle speed had significant effect over the wear properties than the load applied. By YSZ coating, wear properties were increased 10 times.
Aluminium alloys are one of the preferred materials especially for land and air transportation because of their high strength and low-density properties. Although production using casting method is economical yet it has some disadvantages. Shrinkage which is occurred due to the density difference between the solid and liquid metal is prevented by feeders which need to be calculated. Liquid metal should be transferred to the mould without any turbulence. As a result, sprues are needed to be designed precisely. On the other hand, aluminium alloys can also be shaped by forging at semi-solid temperatures. There are some advantages compared to the traditional forging methods of improving die life due to the lower tonnage values. In this study, semi-solid produced 7075 aluminium alloy die filling capabilities were investigated. To achieve semisolid structure strain induced melt activated method (SIMA) was used. The desired structure was achieved at 635°C and 30 minutes of duration of heat treatment. After determining the optimum parameters, metallographic analysis, density calculations, porosity distribution and tensile tests were carried out. It was found that the reproducibility of SIMA produced 7075 alloy was quite low. A proper tensile test result was achieved only 7 of the total 15 tests and the mean value was 386 MPa. The main reason for this scattered in mechanical properties could be the chemical composition of the alloy and the rapid solidification of the liquid eutectic phases. It is important to define the best fitting process parameters and controlling them precisely will be the most important factors for future studies.
Al-4.5Cu alloys are widely used in aerospace industries due to their low weight and high mechanical properties. This group of aluminium alloys is known as 2xx series and exhibits the highest mechanical properties however this alloy is known to suffer from feedability and high tendency for hot tearing. Al-Si alloys (3xx) have improved fluidity and better feedability particularly by several modifications such as Ti, B or Sr. Eutectic temperature is decreased and mechanical properties can be enhanced. Yet, the strength values of this alloy group cannot reach the values of 2xx series. Therefore, in this study, the effect of Ag addition on the fluidity of Al-4.5Cu alloy has been investigated. Standard size spiral mould was used. The casting temperature was selected to be 770oC. Five castings were made and Weibull statistical approach was used to evaluate the results. In addition, coating of the die with BN was also investigated. It was found that Ag addition and BN coating of the die revealed the most reproducible, reliable and high fluidity values.