Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper addresses the issue how to strike a good balance between accuracy and compactness in classification systems - still an important question in machine learning and data mining. The fuzzy rule-based classification approach proposed in current paper exploits the method of rule granulation for error reduction and the method of rule consolidation for complexity reduction. The cooperative nature of those methods - the rules are split in a way that makes efficient rule consolidation feasible and rule consolidation itself is capable of further error reduction - is demonstrated in a number of experiments with nine benchmark classification problems. Further complexity reduction, if necessary, is provided by rule compression.
EN
Mobile vehicle identification has a wide application field for both civilian and military uses. Vehicle identification may be achieved by incorporating single or multiple sensor solutions and through data fusion. This paper considers a single-sensor multistage hierarchical algorithm of acoustic signal analysis and pattern recognition for the identification of mobile vehicles in an open environment. The algorithm applies several standalone techniques to enable complex decision-making during event identification. Computationally inexpensive procedures are specifically chosen in order to provide real-time operation capability. The algorithm is tested on pre-recorded audio signals of civilian vehicles passing the measurement point and shows promising classification accuracy. Implementation on a specific embedded device is also presented and the capability of real-time operation on this device is demonstrated.
EN
This work present a novel approach to track a specific speaker among multiple using the Minimum Variance Distortionless Response (MVDR) beamforming and fuzzy logic ruled based classification for speaker recognition. The Sound sources localization is performed with an improve delay and sum beamforming (DSB) computation methodology. Our proposed hybrid algorithm computes first the Generalized Cross Correlation (GCC) to create a reduced search spectrum for the DSB algorithm. This methodology reduces by more than 70% the DSB localization computation burden. Moreover for high frequencies Sound sources beamforming, the DSB will be preferred to the MVDR for logic and power consumption reduction.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.