Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 12

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W latach 1919–2019 na Uniwersytecie w Poznaniu przyznano matematykom dziewięć doktoratów honoris causa, natomiast dwóch innych kandydatów nie uzyskało zgody wyższej instancji. Otrzymali je matematycy z Polski i zagranicy. Celem tej pracy jest przedstawienie informacji odnośnie dziewięciu matematyków, którym nadano ten tytuł jak i dwóch osób, których spotkała odmowa. Ważną częścią tego opisu są dołączone zdjęcia z tym związane.
EN
In the years 1933--2013 at the University of Poznań was awarded nine honorary doctorates for mathematicians, while two other candidates did not obtain the approval of a higher authority. Mathematicians from Poland and abroad received them. The purpose of this work is to provide information on nine mathematicians who were given the title and two persons who were refused. An important part of this description are photos attached to it.
PL
W latach 1869--1937 odby{\l}o si\k{e} 15 Zjazd\'ow Lekarzy i Przyrodnik\'ow Polskich. Od 1875 roku w Zjazdach uczestniczyli te\.z przyrodnicy, kt\'orzy obradowali w swoich kilkunastu sekcjach. Sekcje matematyczne rozpocz\k{e}{\l}y si\k{e} w 1881 roku i trwa{\l}y do 1933 roku. Trzy przedwojenne zjazdy: 1900 w Krakowie, 1907 we Lwowie i 1911 w Krakowie, gromadzi{\l}y po ponad 1000 uczestnik\'ow. Na o\'smiu Zjazdach, pocz\k{a}wszy od Zjazdu IV w 1884 roku, by{\l}y sekcje matematyczne z wyk{\l}adami matematyk\'ow. By{\l}a to w\'owczas jedyna forma spotka\'n matematyk\'ow polskich z r\'o\.znych zabor\'ow. Szczeg\'olne znaczenie dla matematyk\'ow mia{\l} Zjazd XI, kt\'ory odby{\l} si\k{e} w 1911 roku w Krakowie. Celem tej pracy jest zebranie informacji odno\'snie Zjazd\'ow, a szczeg\'olnie podanie tytu{\l}\'ow odczyt\'ow matematycznych na o\'smiu ze Zjazd\'ow w okresie 1884--1933.
EN
In the years 1869--1937, there were 15 Conventions of Polish Naturalists and Physicians. Since 1875, naturalists who have discussed in their several sections participated in the conventions. Mathematical conventions started in 1881 and finished in 1933. Three pre-war conventions: 1,900 in Krakow, 1907 in Lviv and 1911 in Krakow, gathered for over 1000 participants. At eight Congresses, starting from Congress IV in 1884, there were mathematical sections with lectures of mathematicians. It was then the only form of meetings of Polish mathematicians from various annexations. Particular importance for mathematicians had the XI Congress, which took place in 1911 in Krakow. The purpose of this work is to collect information about conventions, especially to provide titles of mathematical readings on eight of the congresses in the period 1884--1933.
3
Content available remote Józef Marcinkiewicz (1910-1940) - on the centenary of his birth
100%
|
|
nr 1
133-234
EN
Józef Marcinkiewicz's (1910-1940) name is not known by many people, except maybe a small group of mathematicians, although his influence on the analysis and probability theory of the twentieth century was enormous. This survey of his life and work is in honour of the $100^{th}$ anniversary of his birth and $70^{th}$ anniversary of his death. The discussion is divided into two periods of Marcinkiewicz's life. First, 1910-1933, that is, from his birth to his graduation from the University of Stefan Batory in Vilnius, and for the period 1933-1940, when he achieved scientific titles, was working at the university, did his army services and was staying abroad. Part 3 contains a list of different activities to celebrate the memory of Marcinkiewicz. In part 4, scientific achievements in mathematics, including the results associated with his name, are discussed. Marcinkiewicz worked in functional analysis, probability, theory of real and complex functions, trigonometric series, Fourier series, orthogonal series and approximation theory. He wrote 55 scientific papers in six years (1933-1939). Marcinkiewicz's name in mathematics is connected with the Marcinkiewicz interpolation theorem, Marcinkiewicz spaces, the Marcinkiewicz integral and function, Marcinkiewicz-Zygmund inequalities, the Marcinkiewicz-Zygmund strong law of large numbers, the Marcinkiewicz multiplier theorem, the Marcinkiewicz-Salem conjecture, the Marcinkiewicz theorem on the characteristic function and the Marcinkiewicz theorem on the Perron integral. Books and papers containing Marcinkiewicz's mathematical results are cited in part 4 just after the discussion of his mathematical achievements. The work ends with a full list of Marcinkiewicz's scientific papers and a list of articles devoted to him.
4
Content available Franciszek Wlodarski (1889-1944)
63%
PL
Franciszek Włodarski był polskim matematykiem zajmującym się głównie geometrią analityczną i rzutową. W 1911 roku obronił pracę doktorską na Uniwersytecie Fryburskim w Szwajcarii. Opublikował siedem prac naukowych i dwa podręczniki, jeden z geometrii analitycznej, drugi zaś o konstrukcjach geometrycznych. Przetłumaczył także na język polski książkę Federiga Enriquesa dotyczącą geometrii rzutowej i z tego powodu jest wymieniony w Tysiącu lat polskiej mysli matematycznej [5, str. 243].Zainteresowalismy się Włodarskim ze względu na wyrazy uznania dotyczące jego tłumaczenia książki Enriquesa, pracę na Uniwersytecie Poznańskim w latach 1919–1929 i sprzeczne informacje odnśsnie doroku jego śmierci oraz brak zdjęcia we wszelkich opisach dotyczących jego osoby. Dotarliśmy do jego rodziny i dzięki temu byliśmy w stanie zweryfikować istniejące dane oraz uzupełnić brakujące informacje.Przedstawiamy więc koleje życia oraz dorobek naukowy Franciszka Włodarskiego łącznie z wynalazkiem opatentowanym w czterech krajach w latach 1929–1930.
EN
Franciszek Włodarski was a Polish mathematician working mainly in analytic geometry and projective geometry. In 1911 he defended his Ph.D. thesis "Projective geometry on the sphere in the vector calculus" at the University of Fribourg in Switzerland. He published seven scholarly papers and two textbooks, one in analytic geometry, the other one in geometric constructions. He also translated in 1917, from Italian into Polish, the book "Lectures on Projective Geometry" by Federigo Enriques, and this is why he is mentioned in "Tysiąc lat polskiej myśli matematycznej" J. Dianni i A. Wachułka(1963) p. 243. We took interest in Włodarski because of the praise concerning his translation of Enriques's book, his work at the University of Poznań in the years 1919--1929 as well as contradictory information regarding his death year and lack of a photograph in any descriptions concerning his person. We reached his family and, thanks to this, were able complete the missing information. So we present the course of life and the scientific output of Franciszek Włodarski, including an invention patented in the years 1929-1930 in four countries.
5
Content available remote Structure of Cesàro function spaces: a survey
63%
|
|
nr 1
13-40
EN
Geometric structure of Cesàro function spaces $Ces_p(I)$, where I = [0,1] and [0,∞), is investigated. Among other matters we present a description of their dual spaces, characterize the sets of all q ∈ [1,∞] such that $Ces_p[0,1]$ contains isomorphic and complemented copies of $l_q$-spaces, show that Cesàro function spaces fail the fixed point property, give a description of subspaces generated by Rademacher functions in spaces $Ces_p[0,1]$.
6
Content available remote Rademacher functions in Cesàro type spaces
63%
|
|
nr 3
235-247
EN
The Rademacher sums are investigated in the Cesàro spaces $Ces_{p}$ (1 ≤ p ≤ ∞) and in the weighted Korenblyum-Kreĭn-Levin spaces $K_{p,w}$ on [0,1]. They span l₂ space in $Ces_{p}$ for any 1 ≤ p < ∞ and in $K_{p,w}$ if and only if the weight w is larger than $t log₂^{p/2}(2/t)$ on (0,1). Moreover, the span of the Rademachers is not complemented in $Ces_{p}$ for any 1 ≤ p < ∞ or in $K_{1,w}$ for any quasi-concave weight w. In the case when p > 1 and when w is such that the span of the Rademacher functions is isomorphic to l₂, this span is a complemented subspace in $K_{p,w}$.
7
Content available remote Weighted inequalities for monotone and concave functions
63%
|
|
nr 2
133-165
EN
Characterizations of weight functions are given for which integral inequalities of monotone and concave functions are satisfied. The constants in these inequalities are sharp and in the case of concave functions, constitute weighted forms of Favard-Berwald inequalities on finite and infinite intervals. Related inequalities, some of Hardy type, are also given.
8
Content available Stefan Kempisty (1892-1940)
51%
PL
Stefan Kempisty był polskim matematykiem zajmujacym sie funkcjami zmiennej rzeczywistej, teoria mnogosci, całkami, funkcjami przedziału i teorią pola powierzchni. W 1919 roku obronił prace doktorskąa ,,O funkcjach nawpółciągłych na Uniwersytecie Jagiellonskim w Krakowie, a promotorem był Kazimierz Zórawski. W grudniu 1924 roku habilitował się na Uniwersytecie Warszawskimi w latach 1920-1939 pracował na Uniwersytecie Stefana Batorego w Wilnie. Opublikował ponad czterdzieści prac naukowych i trzy podręczniki z analizy rzeczywistej oraz jedną monografię. Reprezentował w swoich pracach i na seminariach szkołę  warszawska. Nazwisko Kempistego w matematyce pojawia się w zwiazku z definicją funkcji quasi-ciągłej, różnymi ciągłościami funkcji wielu zmiennych, klasykacja funkcji Baire'a, Younga i Sierpińskiego, funkcjami przedziału oraz całkami Denjoy'a i Burkilla.
EN
Stefan Jan Kempisty was a Polish mathematician, working in the theory of real functions, set theory, integrals, interval functions and the thory of surface area. In 1919 he defended his Ph.D. thesis On semi{continuous functions at the Jagiellonian University in Krakow under supervision of Kazimierz Z_ orawski. In December 1924 he did habilitation at the Warsaw University and from 1920 to 1939 he worked at the Stefan Batory University in Vilnius. He published over forty scientic papers, three textbooks and one monograph. He represented in his papers and on seminars the Warsaw school. Kempist's name in mathematics appears in connection with the denition of quasi-continuous functions, dierent kind of continuity of functions of several variables, the classication of Baire, Young and Sierpinski functions, interval functions and Denjoy and Burkill integrals.
9
51%
EN
A comparison of the level functions considered by Halperin and Sinnamon is discussed. Moreover, connections between Lorentz-type spaces, down spaces, Cesàro spaces, and Sawyer's duality formula are explained. Applying Sinnamon's ideas, we prove the duality theorem for Orlicz−Lorentz spaces which generalizes a recent result by Kamińska, Leśnik, and Raynaud (and Nakamura). Finally, some applications of the level functions to the geometry of Orlicz−Lorentz spaces are presented.
|
|
nr 3
275-295
EN
Some relations between the James (or non-square) constant J(X) and the Jordan-von Neumann constant $C_{NJ}(X)$, and the normal structure coefficient N(X) of Banach spaces X are investigated. Relations between J(X) and J(X*) are given as an answer to a problem of Gao and Lau [16]. Connections between $C_{NJ}(X)$ and J(X) are also shown. The normal structure coefficient of a Banach space is estimated by the $C_{NJ}(X)$-constant, which implies that a Banach space with $C_{NJ}(X)$-constant less than 5/4 has the fixed point property.
11
Content available remote Lions-Peetre reiteration formulas for triples and their applications
45%
EN
We present, discuss and apply two reiteration theorems for triples of quasi-Banach function lattices. Some interpolation results for block-Lorentz spaces and triples of weighted $L_{p}$-spaces are proved. By using these results and a wavelet theory approach we calculate (θ,q)-spaces for triples of smooth function spaces (such as Besov spaces, Sobolev spaces, etc.). In contrast to the case of couples, for which even the scale of Besov spaces is not stable under interpolation, for triples we obtain stability in the frame of Besov spaces based on Lorentz spaces. Moreover, by using the results and ideas of this paper, we can extend the Stein-Weiss interpolation theorem known for $L_{p}(μ)$-spaces with change of measures to Lorentz spaces with change of measures. In particular, the results obtained show that for some problems in analysis the three-space real interpolation approach is really more useful than the usual real interpolation between couples.
12
Content available remote Interpolation of locally Hölder operators
32%
|
|
nr 3
289-296
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.