Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this research, we investigated the effects of grafting on intermediate metabolites and key enzymes of glycolysis and the tricarboxylic acid (TCA) cycle in selfgrafted and salt-tolerant pumpkin rootstock-grafted cucumber seedlings supplied with nutrient solution and subjected to 80 mM Ca(NO₃)₂ stress for 6 days. Ca(NO₃)₂ stress induced accumulation of 3-phosphoglycerate (3- PGA) and phosphoenolpyruvate (PEP) in the leaves of selfgrafted cucumber seedlings and enhanced the activities of phosphoenolpyruvate carboxylase (PEPC) and enolase (ENO). Succinic acid and malic acid contents and isocitrate dehydrogenase, succinate dehydrogenase (SDH), and malate dehydrogenase (MDH) activities in self-grafted seedlings were significantly decreased by Ca(NO₃)₂ stress. In addition, activities of PEPC, ENO, SDH, and MDH and contents of glycolysis intermediate metabolites (citric, succinic, and malic acids) were significantly higher in leaves of rootstock-grafted seedlings compared with those in self-grafted seedlings under saline conditions. Furthermore, leaf adenosine triphosphate (ATP) content of rootstock- grafted seedlings was relatively higher than that in self-grafted plants under salt stress, with an opposite effect observed on adenosine diphosphate content. These results indicate that rootstock grafting alleviates Ca(NO₃)₂ stressinduced inhibition of the glycolytic pathway and the TCA cycle in cucumber seedling leaves, which may aid the respiratory metabolism of cucumber seedlings and help maintain a high ATP synthesis level, thereby increasing the biomass of cucumber seedlings and enhancing their salt tolerance.
EN
The effects of 24-epibrassinolide (EBL) on carbohydrate metabolism and endogenous content of polyamines were investigated in cucumber seedlings (Cucumis sativus L. cv. Jinyou No. 4) exposed to salinity stress [80 mM Ca(NO₃)₂]. Spraying of exogenous EBL partially enhanced the enzyme activities of sucrose phosphate synthase, sucrose synthase and acid invertase; thus, raising the level of sucrose, fructose and total soluble sugars. The amylase activity was also increased by EBL, companied by the rising of sucrose level. These results indicated that EBL improved the carbohydrate metabolism of cucumber under Ca(NO₃)₂ stress. Moreover, EBL raised the levels of soluble conjugated and insoluble bound polyamines while lowered the free polyamines content, particularly putrescine. Our experiment demonstrated that exogenous EBL elevated stability of cellular membrane and positively improve the carbohydrate metabolism in cucumber growing under Ca(NO₃)₂ stress.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.