Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this study, the feasibility of utilizing an algal photo-bioreactor as a polishing step for secondary treated wastewater was tested. Algal photo-bioreactors utilize the interaction of bacteria and microalgae, which offers an eco-friendly and lower energy consumption technology for nutrient removal and biomass production. The pilot plant in this study consists of an algal photo-bioreactor with an effective volume of 0.188 m³ and a lamella settler, constructed and operated at Zenin Wastewater Treatment Plant, Giza, Egypt. The pilot plant was operated for about 112 days under continuous flow conditions at ambient temperature. The effect of hydraulic retention time (HRT) on the rate of removal of organics and nutrients was investigated at a fixed solid retention time of 15 days. The photo-bioreactor was continuously illuminated with light obtained during the day from sunlight and at night from incandescent lamps. HRT of 16.1 hours had the best overall organic and nutrient removal efficiency. However, from an economic standpoint the optimum applied load was 50 g N/d/m³ and 22 g P/d/m³ for ammonia and phosphorus, respectively. These applied loads correspond to HRTs in the range of five to six hours and expected removal efficiencies above 85% and 70%, respectively, for ammonia and phosphorus.
EN
Acid mine drainage (AMD) production by sulfide mine tailing (SMT) is a major environmental preoccupation because it can degrade water surface quality on account of its strong acidity and advanced content of sulfide, iron (Fe) and other metals and metalloids. Acid neutralization and the precipitation of metals present in AMD were carried out by electro-activation with ion-exchange membranes, which is based on the self-generation of necessary conditions for acid neutralization and metal precipitation. The treatment of SMT was carried out by using an electro-activation cell generated alkaline solution in the cathode compartment. After 60 min of electro-activation, a pHcatholyte of 7.9-9.6, depending on the experimental conditions, was obtained. The absence of Fe and other trace metal ions in the catholyte provide evidence that the electro-activation of SMT promotes the precipitation of insoluble trace metals in the cathode compartment. This approach can be applied to real conditions in combination with a pretreatment of SMT neutralization, inwhich biological calcareous amendments are available. Finally, the electro-activation technology of acid mine drainage may be a feasible, cost-effective approach for SMT neutralization because it focuses on sustainable development.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.