Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The Mineralogical Sciences Committee of the Polish Academy of Sciences and Polish Mineralogical Society analysed the scientific output and achievements of Polish geochemists, mineralogists, and petrologists (collectively termed mineral scientists)between 2012 and 2021. In Poland, there are 212 researchers who declare themselves as mineral scientists. According to SciVal analyses they published 2530 articles between 2012 and2021 in 829 topic clusters. Mineralogical investigations in Poland have become increasingly interdisciplinary. Polish mineral scientists have changed their way of doing research from single-authorship to ever increasing national and international collaboration involving large research groups. Unlike during the previously evaluated period between 1995 and 2011, Polish mineral scientists have increasingly contributed to solving major problems of mineral and environmental sciences. There has been increasing involvement of young researchers in achievements of Polish mineral scientists.
EN
Metallic phases (sulphides, metallic compounds and metals), constitute critical components of metallurgical slags as they concentrate most of the potentially toxic metals occurring within smelting wastes. For this reason, a detailed characterization of the metal-rich phases is crucial for proper estimation of environmental threat resulting from slags deposition. Metallic phases observed in slags were transformed from the original ore minerals during metal smelting, and they constitute an interesting field for observations of sulphides and metals susceptibility to temperature and chemistry changes. In this study, we observed that compositions similar to sulphide minerals (e.g. bornite, chalcocite, pyrrhotite) are common, but they always appear in specific sets. We distinguished 3 general types of metallic phases: copper-iron-sulphur (among which the following subtypes appear: bornite-pyrrhotite, chalcocite, and chalcopyrite, all ofthese with various exsolutions), metallic copper and iron-phosphorous (Fe-P) type. Among all the distinguished types, Fe4Pproved to be most resistant to weathering whereas the Cu-Fe-S assemblage was altered strongly when not surrounded by glass or crystalline phases. Observations revealed that iron-rich metallic phases tended to appear in amorphous slags and copperrich phases occurring within crystalline samples.
EN
Previously unknown exposures of silicified serpentinites have been documented within the Szklary Massif, which is a fragment of the tectonically dismembered Central Sudetic Ophiolite (NE Bohemian Massif). On the basis of textural, mineralogical and chemical differences, two types of silicified serpentinites have been distinguished in this study (Type I and Type II). Type I is characterized by well-preserved primary minerals cut by numerous veinlets filled with microscale euhedral quartz crystals. Studied samples of Type I are enriched in silica (from 62 to 69 wt.% SiO2) and depleted in magnesium (from 10 to 19 wt.% MgO) in comparison to serpentinized peridotites from the Szklary Massif. Type II is almost exclusively composed of amorphous or poorly crystalline silica, with microquartz aggregates being the most abundant form. Silicified serpentinites of Type II show extremely high values of silica (from 83 to 90 wt.% SiO2) and low magnesium concentrations (from 4 to 8 wt.% MgO). Both types of silicified serpentinites have elevated content of REE and many other trace elements generally regarded as incompatible. We infer that the earlier silicification event was caused by the percolation of Si-rich hydrothermal fluids derived from igneous rocks, which intruded this area from ca. 380 to 330 Ma. A subsequent silicification event is the result of silica remobilization during intense chemical weathering under tropical conditions, which could have occurred between Late Cretaceous and Miocene.
EN
Heavy mineral particles are widely used in Earth science studies to show sediment provenance and weathering conditions. Such particles are particularly useful in polluted soils surrounding mining and smelting facilities because heavy minerals are common by-products of these activities and may accumulate in the soils. As such, the particles are suitable indicators of metallic element carriers and their stability in the soil environment. In this study, we analyze heavy mineral particles in two soils surrounding the active copper smelter (Legnica, SW, Poland). We show that particles associated with different smelting activities dominate the heavy mineral fraction. We note the general absence of sulfides in the fraction indicating that these minerals might have been entirely dissolved, but timing of this dissolution is uncertain (before or after deposition within soils). Currently, the carriers of potentially toxic elements are mainly secondary Fe oxides. Studies aiming at better estimation of the proportion of metallic elements contained in heavy mineral particles are needed to fully use the potential of these phases in polluted soil studies. We estimate that Pb contained in Pb-rich silicate glass constitutes.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.