The present study aims to apply a least squares support vector model (LS–SVM) for predicting cleaning efficiency of an electromagnetic filtration process, also called quality factor, in order to remove corrosion particles (rust) of low concentrations from water media. For this purpose, three statistical parameters: correlation coefficient, root mean squared error and mean absolute percentage error were calculated for evaluating the performance of the LS–SVM model. It was found that the developed LS–SVM can be used to predict the effectiveness of electromagnetic filtration process.
Saccharamyces cerevisia known as baker’s yeast is a product used in various food industries. Worldwide economic competition makes it a necessity that industrial processes be operated in optimum conditions, thus maximisation of biomass in production of saccharamyces cerevisia in fedbatch reactors has gained importance. The facts that the dynamic fermentation model must be considered as a constraint in the optimisation problem, and dynamics involved are complicated, make optimisation of fed-batch processes more difficult. In this work, the amount of biomass in the production of baker’s yeast in fed-batch fermenters was intended to be maximised while minimising unwanted alcohol formation, by regulating substrate and air feed rates. This multiobjective problem has been tackled earlier only from the point of view of finding optimum substrate rate, but no account of air feed rate profiles has been provided. Control vector parameterisation approach was applied the original dynamic optimisation problem which was converted into a NLP problem. Then SQP was used for solving the dynamic optimisation problem. The results demonstrate that optimum substrate and air feeding profiles can be obtained by the proposed optimisation algorithm to achieve the two conflicting goals of maximising biomass and minimising alcohol formation.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.