We deal with compact surfaces immersed with flat normal bundle and parallel normalized mean curvature vector field in a space form Qc2+p of constant sectional curvature c ϵ {−1, 0, 1}. Such a surface is called an LW-surface when it satisfies a linear Weingarten condition of the type K = aH + b for some real constants a and b, where H and K denote the mean and Gaussian curvatures, respectively. In this setting, we extend the classical rigidity theorem of Liebmann (1899) showing that a non-flat LW-surface with non-negative Gaussian curvature must be isometric to a totally umbilical round sphere.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.