It is imperative to characterize the crushing behaviour of deep drawn components of tailor welded blanks for their wide applications in different autobody structures. In the present work, extra deep drawing steel sheets were laser welded to produce welded blanks of similar thickness and dissimilar thickness (LWTBs), and these were deformed using a two stage deep drawing setup to fabricate geometrically similar drawn cups consisting of both hemispherical and cylindrical segments. Subsequently, these drawn cups were axially crushed between two flat platens to study collapse modes, load–displacement responses and energy absorption capabilities. The collapse of the drawn cups was found to onset with an inward dimpling of the hemispherical segment. As deformation progressed, the folding of cylindrical section occurred either axisymmetrically or unevenly based on the extent of non-uniform thickness variations across the weld zone (WZ). It was also found that the load–displacement response and energy absorption of the cups were enhanced because of the presence of WZ and thickness difference in LWTBs. Also, finite element-based numerical models were developed to collate the prediction capabilities of three different anisotropic material models viz. Hill48, YLD89, and Stoughton non-associated flow rule (S-NAFR)-based model. All these material models were successfully calibrated to predict the collapse modes, but the S-NAFR model was found to closely predict the load–displacement curves and energy absorption. Furthermore, the assessment of specific energy absorption and crushing force efficiency suggested that lightweight LWTB components can be fabricated with improved crashworthiness performance using sheet materials of different thickness.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The metal foams behavior significantly depends on the method applied for its manufacturing. Present work investigates the mechanical quasistatic three-point and compressive deformation behavior of molded die-cast open-cell Aluminum Alloy foam (OCAF). Different span lengths and loading velocities were selected for the experimentation. The deformation behavior of the OCAF was studied and the effect was correlated with different theories available for foam deformation. The plastic behavior of OCAF was also studied using a compression loading-unloading experiment at different stress and strain values. Microstructural study and phase analysis were carried out at the cell wall surfaces using fractography to establish the cause of brittle failure dominant in the foam. Further, micro-CT analysis was used to study the cell deformation in the bulk material and the role of micropores and macro-pores.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.