Wear and tear processes, in combination with the dynamics of machines, are the source of many methods of technical objects diagnosis which are useful in practice. Unfortunately, generation of signals is inherently associated with generation of noise and disturbances, which makes the tasks of defining the symptoms and extraction of diagnostic information much more difficult. The article presents a proposal of implementation of a solution eliminating the noise while using the blind equalization method, while also presenting the influence that use of this method has influence on selected reliability characteristics.
The purpose of this paper is to develop, for highly-resistant materials, a method of forecasting and analysis of gigacycle fatigue durability (108-109 cycles) relying on vibroacoustic signal analysis. The proposed method involves use of results of vibroacoustic signal analysis obtained during accelerated fatigue tests conducted in dedicated test bed constructed specially for this purpose and operating in the frequency range of 10 kHz which corresponds to the resonance frequency of vibration of samples. Let us note that the process of defect formation may lead to both, the intensification of non-linear phenomena as well as the occurrence of non-stationary effects even if during the early stages the intensity of defects is small while the growth of the level of vibration and noise is negligible, as contrasted with emergency states. A useful method is to test the higher order spectra, which respectively define the non-linear effects. The conducted analyses point to high usability of Hilbert spectrum through the EMD examining the non-stationary character of signals. The main goal of these investigations is to examine the signal processing method for gigacycle fatigue durability and impact of dynamic stress. Efficient signal analysis would be especially important for high frequency loading which dominates in rotating machinery diagnosis.
PL
Celem pracy jest opracowanie, dla materiałów o wysokiej wytrzymałości, metody prognozowania i analizy gigacyklowej trwałości zmęczeniowej (108-109 cykli) na podstawie badania sygnału wibroakustycznego. W metodzie proponuje się wykorzystać wyniki analizy sygnału wibroakustycznego, uzyskiwane podczas przyspieszonych badań zmęczeniowych, prowadzonych na specjalnie do tego celu skonstruowanym i zbudowanym stanowisku badawczym, pracującym w zakresie częstotliwości rzędu 10 kHz, odpowiadającym częstotliwości drgań własnych próbek. Zauważono, że proces kształtowania się uszkodzenia może prowadzić zarówno do nasilenia zjawisk nieliniowych jak również do wystąpienia efektów niestacjonarnych nawet wtedy, kiedy podczas wczesnych stadiów uszkodzeń ich intensywność jest mała a wzrost poziomu drgań i szumu jest pomijalny, porównując go z poziomem przy stanach zagrożenia. Użyteczna jest w tym wypadku metoda widm wyższego rzędu, która odpowiednio definiuje efekty nieliniowe. Zamieszczone w publikacji analizy wskazują na dużą użyteczność widm Hilberta a w szczególności empirycznej dekompozycji sygnału (EMD), która pozwala na analizę niestacjonarnego charakteru sygnału. Głównym celem badań było znalezienie skutecznej metody przetwarzania sygnałów dla gigacyklowych wytrzymałościowych procesów zmęczeniowych oraz zbadanie wpływu obciążeń dynamicznych. Efektywny sposób analizy sygnału jest szczególnie ważny w diagnostyce maszyn obrotowych gdzie występują wysoko częstotliwościowe obciążenia.
Finite element modelling provides a great deal of support in understanding technological processes. This paper proposes the application of variational and finite element methods for the analysis of blanking and the nonlinearities of this process. Numerical analysis are conducted in ANSYS LS-Dyna programme, with use of the explicit method. The influence of various process conditions on the strain and stress states and the quality of the final product are analysed.
PL
Metoda Elementów Skończonych jest obecnie szeroko wykorzystywana do analizy procesów technologicznych. Praca przedstawia zastosowanie rachunku wariacyjnego i MES do analizy procesu wykrawania z uwzględnieniem nieliniowości procesu. Analizy numeryczne przeprowadzono w systemie ANSYS LS-Dyna z wykorzystaniem metody explicit. Przedstawiono wpływ wybranych warunków realizacji procesu na stany naprężeń, odkształceń i przemieszczeń oraz na jakość wyrobu finalnego.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.