Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
As a result of the increase in the world population and the decrease in agricultural land, the need for food increases every day. Nowadays, breeding studies are carried out to increase the yield of plants to get more products from the same area. Furthermore, controlled production areas are created by optimizing climatic conditions and the continuity of production is ensured. It is called greenhouse, where production can be carried out throughout the year and the indoor temperature and humidity conditions can be controlled. Nowadays, greenhouses are now functioning as an industrial enterprise. However, greenhouses need to comply with the principles of quality production, efficient income growth and physical environmental protection. Almost all of the plant production in greenhouses in Turkey is done in the Mediterranean region, but in the Southeastern Anatolia Region, it is done in a very limited greenhouse area. The increase of protected agricultural areas in the Mediterranean region and the fact that the production volume cannot reach a certain limit makes it necessary to investigate alternative protected production areas. In this study, climate conditions of Antalya province and climate data of four provinces of the Lower Euphrates basin are compared with each other and statistically compared. As a result of, differences have been found between Antalya province and the provinces in the Lower Euphrates basin in terms of minimum, maximum, and average temperatures. However, there is no difference between the provinces in the basin except for Gaziantep in terms of climatic conditions. Therefore, it has been determined that Gaziantep province is not suitable for greenhouse cultivation. However, it has been concluded that if greenhouse cultivation is performed in this province, it is appropriate to perform cultivation in the areas where alternative energy sources can be used. It has been concluded that in the case that heating costs are reduced using alternative energy sources, Şanlıurfa and Kilis provinces are climatologically suitable for greenhouse cultivation and Adıyaman province is partially suitable for it.
EN
The increasing world population renders the developed energy sources of the industry insufficient, and existing energy sources become expensive. It is anticipated that the energy deficit will further increase in the future. Scientists are in search of new energy sources in the face of this fact. It is considered that the cattle breeding potential of the Southeastern Anatolia Region may increase both as a result of state supports and arable lands. Determining the potential biogas energy production areas of the Southeastern Anatolia Region in terms of cattle breeding is possible with the use of today's knowledge and technology. With this study, it was aimed to determine the obtainable biogas energy fields and the current situation for the provinces in the Tigris Basin (Diyarbakir, Mardin, Siirt, Batman, Sirnak). The number of cattle in the basin for 2015 was benefited from in this framework. The boundaries of the research provinces were drawn using ARCMAP 10.0 software by making geographical corrections. In order for the inquiries of each province to be made independently from other provinces, all boundaries were divided on the basis of provinces, districts and villages as separate layers. These data constitute the main material of the study. The number of cattle was entered into the database of Geographical Information System (GIS), and the obtainable potential biogas energy production areas were determined considering the amount of waste that will be left in the environment by cattle. The finding that a total of 2809939 tons of annual wet manure can be obtained in the study area was obtained. It was determined that a total of 1175913 MJ biogas energy amount can be obtained per year from this wet manure. Further- more, the project created with a cartographic base, the geographical correction of which was made, was assessed in accordance with the purpose of this study in the database, and the areas that are suitable, non-suitable or partially suitable for biogas energy production areas were determined.
EN
Based on the amount and duration of external temperature, degree day values are determined according to whether the selected equilibrium temperature is lower or higher than the air temperature. Degree day values are calculated according to the fluctuations in ambient temperature. It can be understood whether heating or cooling systems are necessary within the calculated periods. In this study, the meteorological data of Antalya region dating back many years and the temperature values suggested according to the cultivation periods of tomato in greenhouse environment have been used as material. The daily average temperature values recorded for many years have been compared with the equilibrium temperature values selected for the tomato plant thereby calculating the heating and cooling day values for each cultivation period. Tomato cultivation in greenhouses is carried out in 2 periods in the region in spring and autumn. At the end of these two periods, it was determined that the heating degree days in autumn were determined to be higher than that in spring. Whereas cooling degree days were determined to be greater for autumn cultivation in comparison with that of spring cultivation. Information regarding the energy consumption of an agricultural structure can be obtained beforehand via the heating and cooling degree day values. It has been surmised that such studies will help in making estimations regarding the energy need of various agricultural structures as well as gaining insight in the planning of the design stages that are directly related to the energy consumption of the building such as heating, cooling and ventilation.
EN
Degree-day values can be calculated using climatic data. Thus, seasonal, monthly, daily and hourly energy requirements for heating and cooling in buildings can be calculated. The effect of outside ambient temperature can be determined by means of the degree-day method in determining the basic temperature values in buildings. The altitude and latitude affect significantly the temperature distribution in the Earth. Thus, the latitude and altitude values are required to determine the degree hour values. This study was taken in 9 provinces located in the Southeastern Anatolia Region (SAR). The annual outdoor dry-bulb thermometer temperatures for a long period of nine provinces in the SAR were obtained to determine heating and cooling degree hour values according to the six different base temperatures. According to the suggested six different base temperature values, the cumulative long-term annual heating degree-hour (HDH) value was 50862 in total for Gaziantep province. The lowest cumulative long-term annual heating degree-hour value took place in Sanliurfa province as 39638. Also, the highest total cooling degree-hour (CDH) value took place in Sanliurfa province as 10886 degree-hour value and the lowest value took place in Sirnak province as 3909. It was determined that there was not an exact linear or monotonous relationship between HDH and CDH values and altitude, latitude and longitude values. However, although it was seen that the relationship of CDH values with the altitude was not a formal linear or monotonous relationship, it was determined that CDH values decreased linearly together with the increasing altitude values when the values were examined.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.