Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Multi-object tracking is a crucial aspect of perception in the area of computer vision, widely used in autonomous driving, behavior recognition, and other areas. The complex and dynamic nature of environments, the ever-changing visual features of people, and the frequent appearance of occlusion interactions all impose limitations on the efficacy of existing pedestrian tracking algorithms. This results in suboptimal tracking precision and stability. As a solution, this article proposes an integrated detector-tracker framework for pedestrian tracking. The framework includes a pedestrian object detector that utilizes the YOLOv8 network, which is regarded as the latest state-of-the-art detector, that has been established. This detector provides an ideal detection base to address limitations. Through the combination of YOLOv8 and the DeepSort tracking algorithm, we have improved the ability to track pedestrians in dynamic scenarios. After conducting experiments on publicly available datasets such as MOT17 and MOT20, a clear improvement in accuracy and consistency was demonstrated, with MOTA scores of 63.82 and 58.95, and HOTA scores of 43.15 and 41.36, respectively. Our research highlights the significance of optimizing object detection to unleash the potential of tracking for critical applications like autonomous driving.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.