The article presents the use of swarming algorithms in selecting the heat transfer coefficient, taking into account the boundary condition of the IV types. Numerical calculations were made using the proprietary TalyFEM program and classic form of swarming algorithms. A function was also used for the calculations, which, during the calculation, determined the error of the approximate solution and was minimalised using a pair of individually employed algorithms, namely artificial bee colony (ABC) and ant colony optimisation (ACO). The tests were carried out to select the heat transfer coefficient from one range. Describing the geometry for a mesh of 408 fine elements with 214 nodes, the research carried out presents two squares (one on top of the other) separated by a heat transfer layer with a κ coefficient. A type III boundary condition was established on the right and left of both edges. The upper and lower edges were isolated, and a type IV boundary condition with imperfect contact was established between the squares. Calculations were made for ABC and ACO, respectively, for populations equal to 20, 40 and 60 individuals and 2, 6 and 12 iterations. In addition, in each case, 0%, 1%, 2% and 5% noise of the reference values were also considered. The obtained results are satisfactory and very close to the reference values of the κ parameter. The obtained results demonstrate the possibility of using artificial intelligence (AI) algorithms to reconstruct the IV type boundary condition value during heat conduction modelling.
The research shows how to use swarming algorithms to rebuild the heat transfer coefficient, especially in regard to the continuous border condition. The authors utilized their application software to do numerical computations, employing classical variants of swarm algorithms. The numerical calculations employed a functional determining error to assess the accuracy of the estimated result. The functional minimization was conducted with the swarm algorithms (especially ABC and ACO). The geometry analyzed in this study consisted of a square shape referred to as the cast, enclosed within another square shape known as the casting mold. These two squares were separated by a layer facilitating heat conduction, characterized by the coefficient κ. The coefficient of the thermally conductive layer was recalibrated utilizing swarm methods within the range of 900 - 1500 [W/m^2K] and subsequently compared to a predetermined reference value. A finite element mesh consisting of 576 nodes was used for the calculations. The study involved simulations with populations of 5, 10, 15, and 20 individuals. Furthermore, each scenario also took into account noise of 0%, 2%, and 5% of the reference values. Results make evident the reconstructed value of the κ coefficient, cooling curves, and temperatures for the ABC and ACO algorithms are physically correct. The consequences indicate a notable level of satisfaction and strong concurrence with the anticipated of the κ parameter values. The results from the numerical simulations demonstrate considerable promise for applying artificial intelligence algorithms in optimizing production processes, analyzing data, and facilitating data-driven decision-making.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.