Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Many multiple objective optimization algorithms have been described in the literature. Some of them use a "metaheuristic" (genetic algorithm, simulated annealing, tabu search and so on) that allow, in principle, to avoid getting trapped into a local minimum of an objective function. We feel that this approach can be advantageously extended to a large set of multiple objective optimization methods. Moreover, it is interesting to perform a systematic comparison between performances of various multiple objective metaheuristics. Such a comparison needs, on the one hand, to adopt a common set of test functions and, on the other hand, to use a common set of performance criteria. In this study, we propose to compare various metaheuristics associated with various multiple objective optimization methods (such as weighted sum of objective functions, goal programming, distance method and so on). These different couples are evaluated using a set of classical test functions. The set of test functions is chosen so as to represent most of the difficulties (multifrontality, discontinuity, non-convexity and so on) that can be met in engineering when handling real multiple objective optimization problems.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.