Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In order to achieve energy savings and promote on-site integration of photovoltaic energy in electrified railways, a topology structure is proposed for the integration of photovoltaic (PV) and the energy storage system (ESS) into the traction power supply system (TPSS) based on a railway power conditioner (RPC). This paper analyzes the composition and operation principles of this structure. To assess the economic benefits brought by the integration of photovoltaic and energy storage systems, a bilevel optimization model is established, with the objectives of optimizing energy storage capacity configuration and photovoltaic energy integration. The KKT (Karush–Kuhn–Tucker) method is employed to transform the model into a single-layer mixed-integer linear programming model, which is then solved using the CPLEX solver in MATLAB. The research findings indicate that, with the configuration of the ESS, the optimal PV consumption rate achieved is 96.8749%. Compared to a 100% PV consumption rate, the ESS capacity configuration is reduced by 13.14%, and the overall operational cost of the TPSS is at its lowest. The study suggests that the proposed bilevel optimization algorithm can more effectively consider PV consumption, leading to enhanced economic performance of the TPSS operation.
EN
In order to meet the lightweight requirements of high-speed trains, the inductancecapacitance (LC) resonance circuits are cancelled in the traction drive system of some high-speed electric multiple units (EMUs) in China, which will lead to large low-order current harmonics on the grid side in the traction drive system of EMUs, seriously affecting the power quality. Therefore, the low-order harmonic current of the traction drive system of an EMU is studied in this paper. Firstly, the working principle of a four-quadrant pulse rectifier in a traction drive system is analyzed, and then the generation mechanism of loworder current harmonics on the grid side is studied deeply. Secondly, the voltage outer loop and current inner loop control of a four-quadrant pulse rectifier are optimized respectively. In the voltage outer loop control, a Butterworth filter is designed to suppress the beat frequency voltage of the DC side voltage, so as to indirectly suppress the low-order current harmonics. In the current inner loop, a quasi-proportional resonance (PR) controller with harmonic compensation is used to suppress low-order current harmonics, and a novel loworder current harmonics suppression strategy based on the Butterworth filter and quasi-PR controller is proposed. Finally, the results of the simulated validation of the proposed control strategy show that compared with the existing method of the notch filter ₊ PR controller, the proposed optimal control strategy has a better effect on low-order current harmonic suppression, and improves the dynamic performance of the control system, further showing the correctness and effectiveness of the optimal control strategy.
EN
To improve the power quality of a multi-pulse rectifier, a zigzag 18-pulse uncontrolled rectifier with an auxiliary circuit at the DC side is proposed. When the grid-side currents are sinusoidal waves, the required DC side injection currents to be compensated can be obtained by analyzing the AC-DC side relationship of diode bridge rectifiers. Then the 6 compensation currents generated by an active auxiliary circuit are injected into the DC side to eliminate the grid-side harmonics of the rectifier. The simulation results verifying the correctness of the theoretical analysis show that the proposed rectifier can mitigate the harmonic content, as the total harmonic distortion of the grid-side current is about 1.45%. In addition, the single-phase inverter used in the active auxiliary circuit has the characters of simple circuit structure and easy controllability.
EN
The problem of large speed loss exists in the traditional passing through the electric phase-separation method of trains, which is more prominent when trains pass through an electric phase-separation zone in the uphill section of long ramps and may lead to the trains not passing through the phase-separation zone safely. In order to solve this problem, based on the energy storage type railroad power conditioner, a train uninterrupted phase-separation passing system based on the energy storage type railroad power conditioner is proposed. The energy storage railroad power conditioner can realize the recovery and utilization of regenerative braking energy of the electrified railroad. In the structure of the energy storage railroad power conditioner, the single-phase inverter is led from the middle DC side of the energy storage railroad power conditioner and connected to the neutral line through the LCL filter and the step-up transformer, which constitutes an uninterrupted phase separation passing system. The single-phase inverter is controlled using virtual synchronous generator technology, which allows the single-phase inverter to have external characteristics similar to those of a synchronous generator, providing support for the voltage and frequency in the neutral zone. The power required by the train to pass the electric phase-separation is provided by the power supply arm or the energy storage system, which not only improves the utilization rate of regenerative braking energy but also realizes the uninterrupted phase separation passing of the train through the control of the voltage in the neutral region.
EN
High-frequency resonance is a prominent phenomenon which affects the normal operation of the high-speed railway in China. Aiming at this problem, the resonance mechanism is analyzed first. Then, model predictive control and selective harmonic elimination pulse-width modulation (MPC-SHEPWM) combined control strategy is proposed, where the harmonics which cause the resonance can be eliminated at the harmonic source. Besides, the MPC is combined to make the current track the reference in transients. The proposed control has the ability to suppress the resonance while has a faster dynamic performance comparing with SHEPWM. Finally, the proposed MPC-SHEPWM is tested in a simulation model of CRH5 (Chinese Railway High-speed), EMUs (electric multiple units) and a traction power supply coupled system, which shows that the proposed MPC-SHEPWM approach can achieve the resonance suppression and shows a better dynamic performance.
EN
Aiming at the problems of the negative sequence governance and regenerative braking energy utilization of electrified railways a layered compensation optimization strategy considering the power flow of energy storage systems was proposed based on the railway power conditioner. The paper introduces the topology of the energy storage type railway power conditioner and analyzes its negative sequence compensation and regenerative braking energy utilization mechanism considering the influence of equipment capacity and power flow of the energy storage system on railway power conditioner compensation effect, the objective function and constraint conditions of the layered compensation optimization of the energy storage type railway power conditioner were constructed and the sequential quadratic programming method was used to solve the problem. The feasibility of the proposed strategy is verified by a multicondition simulation test. The results show that the proposed optimization compensation strategy can realize negative sequence compensation and regenerative braking energy utilization, improve the power factor of traction substations when the system equipment capacity is limited and it also has good realtime performance.
EN
A three-level multi-input DC/DC converter is proposed to solve the problems of complex interface circuit structure and high economic cost for multi-source access to the joint power supply distribution system. In this structure, multiple dc sources are integrated into a three-level DC/DC converter. In comparison with the two-stage counterpart, two active switches and boost diodes are eliminated, while two blocking diodes are added to block the reverse current from the dc-link capacitors. In addition, when the input inductors work in the discontinuous conduction mode, power sharing among different input sources can be achieved by properly selecting the inductance value. The working principle of the converter is analyzed by introducing nine working modes in detail and deriving the steady-state relationship expressions. The parameter range of the element is determined and the design process of a group of dynamic parameter values is shown. Finally, the power electronics real-time simulation platform is built based on StarSim HIL and the corresponding experimental waveforms are given to verify the topology and analysis.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.