An analysis has been carried out to study the non-Darcy flow behavior and heat transfer characteristics of a non-Newtonian power law fluid over a non-isothermal stretching sheet with variable thermal conductivity and internal heat generation/absorption. Thermal conductivity is assumed to vary as a linear function of temperature. The partial differential equations governing the flow and heat transfer are converted into ordinary differential equations by a similarity transformation. The presence of non-Darcy forced convection and power law index leads to coupling and non-linearity in the boundary value problem. Because of the coupling and non-linearity, the problem has been solved numerically by the Keller box method. The computed values of horizontal velocity and temperature, boundary layer thickness are shown graphically in tables and figures. Several reported works on the problem are obtained as limiting cases of the present study. The results of the study have implications in extrusion processes and in other applications with porous media.
The present analysis is focused on the study of the magnetic effect on coupled heat and mass transfer by mixed convection boundary layer flow over a slender cylinder in the presence of a chemical reaction. The buoyancy effect due to thermal diffusion and species diffusion is investigated. Employing suitable similarity transformations, the governing equations are transformed into a system of coupled non-linear ordinary differential equations and are solved numerically via the implicit, iterative, second order finite difference method. The numerical results obtained are compared with the available results in the literature for some special cases and the results are found to be in excellent agreement. The velocity, temperature, and the concentration profiles are presented graphically and analyzed for several sets of the pertinent parameters. The pooled effect of the thermal and mass Grashof number is to enhance the velocity and is quite the opposite for temperature and the concentration fields.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.