Sand lizards (Lacerta agilis) were trapped and examined for ticks from May to September in 2002 and 2003 in Northeastern Poland. A total of 233 Ixodes ricinus (L.) ticks (76 larvae and 157 nymphs) was found on 31 of 235 captured lizards (13.2%). The tick infestation is relatively low compared to that of mammals and passerine birds from the same area (Siński et al. 2006, Gryczyńska et al. 2002). Tick infestation depended on the month of capture, being the highest in spring. In autumn no ticks were recorded on any of the captured lizards. The oldest lizards carried the highest number of ticks but no differences related to sex of the host were found. All the collected ticks were analysed by PCR for the presence of Borrelia burgdorferi sensu lato, the etiological agents of Lyme disease. Spirochetes were detected in 11 out of 233 (4.7%) ticks tested. Genetic analysis confirmed that the spirochetes are members of the Borrelia afzelii, B. garinii and B. burgdorferi sensu stricto genospecies. Mixed infection were not detected. The prevalence of infection was analysed in relation to months of the capture, age and sex of the lizards, but differences were not statistically significant. The obtained results suggest that lizards are probably not B. burgdorferi reservoirs, but further studies are required to confirm this.
The aim of this study was to determine the influence of human pressure and spatial structure of landscape on the occurrence of populations of small mammals in the environment of a large urban agglomeration. The investigations were carried out in Warsaw, Poland in 17 locations. The study sites were located on both sides of the Vistula River, of different landscape spatial structure, in various distances from the city center, and were subject to different degrees of human pressure. Part of the city located on the left bank of the Vistula River is more strongly transformed by man than the part located on the right bank of the river. A total of 933 specimens of 8 species of small mammals were caught using the live-trapping method (Catch-Mark-Release). The richest species composition was found at the city borders and in rural areas. On the left side of Vistula, the species diversity was lower than on the right side, showing significant negative correlation with the human pressure degree. Such pattern was not confirmed on the right side of the river. The only species to occur in all sites on the left side of Vistula was the striped field mouse (Apodemus agrarius). On the right side of Vistula, the striped field mouse was accompanied by the yellow-necked mouse (Apodemus flavicollis) in all research sites. The results indicate that the degree of human pressure and spatial isolation are crucial for composition of small mammal community. Less advanced urbanization processes in areas on the right bank of Vistula, as compared to districts on the left side, provide better contact between local populations of small mammals, and offer better living conditions to a large number of species, even in areas located in the center of the city.
Reduced connectivity among local populations inhabiting a spatially heterogeneous landscape may restrict gene flow and thus contribute to diminished genetic variation within a population. The aim of this study was to determine the role of geographic distance and habitat barriers in developing genetic structure of a yellow-necked mouse Apodemus flavicollis (Melchior, 1834) population, taking into consideration the spatial organization of the landscape. A field study was carried out in two plots located in NE Poland that differed considerably in terms of the scale of habitat fragmentation: (1) a continuous forest complex, and (2) a mosaic of smaller forest habitats. The plots were separated by a water barrier comprised of a chain of lakes. DNA samples from a total of 654 individuals were examined by microsatellite analysis (5 loci). The results showed that the yellow-necked mouse population was characterized by a poorly pronounced genetic structure throughout the study area, although the statistical significance of F ST for most location pairs indicated that gene flow in the area was not free. The division of the mouse population into three genetically distinct groups clearly demonstrated the significant role of water bodies as a natural barrier effectively hindering free movement of animals and thus gene flow. Analysis of the genetic structure of the mouse population throughout the study area and also within the distinguished groups indicated that the entire study population may be considered as a single metapopulation. Our results suggest that geographic distance alone is not the predominant factor affecting the genetic structure of population, but in the mosaic landscape the relative isolation of individual forest fragments, and barriers hindering movements of individuals and limiting gene flow among local populations played a much more important role.
Multiple paternity has been described in a wide range of taxonomic groups (eg invertebrates, fish, reptiles, birds, mammals). In rodents, multiple paternity seems to be common and can lead to both genetic (eg increase in offspring diversity, avoiding inbreeding) and direct (eg higher survival rate of the litter) benefits. The primary aim of this study was to confirm multiple paternity and evaluate its frequency in a wild population of yellow-necked mouseApodemus flavicollis (Melchior, 1834). Animals were trapped in north-eastern Poland in 2004–2006. Five microsatellite loci previously described for members of the genusApodemus were used to examine the occurrence of multiple paternity among the offspring of 10 pregnant females. The analyses were performed using multiplex PCR, estimating the length of amplified fragments with an automated sequencer. The presence of additional alleles indicating multiple paternity was found in 30% (3 out of 10) of the investigated litters. Offspring fathered by a single male were predominant in each litter, with the proportion of individuals originating from other males varying from 16.7 to 20% in the three multiple paternity cases. Our findings indicate that the promiscuous mating system may be considered as an alternative breeding strategy in the yellow-necked mouse.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.