The application of methods using graphs to model a variety of engineering issues has been known for several decades, but the application of graph algorithms to model the urban water management issues is a completely new approach. The article reviews the scientific literature on integrated urban water management systems in terms of the use of graph theory algorithms in this topic. Such a review has not been done before and constitutes a completely novel study. Some of the algorithms presented are directly derived from graph theory, while others were developed from other sciences, including environmental engineering or genetics, to solve specific engineering problems. The paper presents a general scheme and a brief description of the most important components of an integrated urban water management system. The necessary concepts of graphs were defined, the origin and the principle of graph algorithms used in modeling water management issues (Loop-By-Loop Cutting Algorithm, Hanging Gardens Algorithm, Tree Growth Algorithm, Dijkstra’s Algorithm, Genetic Algorithm, and Bayesian Networks Algorithm) were described. Their use in modeling the issues in stormwater, sanitary sewage and water distribution system was described. A complete list of scientific literature in this field was provided.
An extensive methodology for analyzing the impact of catchment and sewer network retention on drainage system operating conditions during hydraulic overloading is presented. To evaluate the performance of the sewer system and identify the need for repair actions, logistic regression models were developed to predict the unit flooding volume and manhole overflowing. An advanced sensitivity analysis was performed to determine the key parameters (retention and roughness of impervious and pervious areas as well as sewer channel retention) conditioning the reduction of uncertainty in the simulation results and ensuring the assumed hydraulic effect. A coefficient expressing the quotient of the duration of rainfall conditioning the exceedance of the limits of the unit flooding volume (13 m3·ha−1) as well as the degree of overflowed manholes (0.32) was determined, allowing the determination of the key performance criterion of the sewer network to take corrective action depending on field and channel retention. It was shown that the catchment area retention had the key influence on the conditions of sewer operation and the probability of remedial work. Increasing the rainfall duration led to a decrease in sensitivity coefficients with respect to the identified parameters of the SWMM model, which is important when selecting rainfall events for the calibration and validation sets. The usefulness of the developed methodology was demonstrated at the stage of building mechanistic models, which is of significance when planning field studies.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.