Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Cytidine 5’-diphosphocholine (CDP-choline) is an endogenously synthesized mononucleotide which exerts a variety of physiological effects by altering central cholinergic transmission. Administered intracerebroventricularly (i.c.v.) or intravenously, it reverses haemorrhagic hypotension in rats, apparently by the activation of central cholinergic receptors. The study was undertaken to investigate the involvement of the central histaminergic system in CDP-choline-mediated reversal of haemorrhagic hypotension. Experiments were carried out in male ketamine/xylazine-anaesthetised Wistar rats subjected to haemorrhagic hypotension of 20-26 mmHg. CDP-choline (2 µmol; i.c.v.) administered at 5 min of critical hypotension produced a long-lasting pressor effect with increases in mean arterial pressure (MAP), heart rate (HR), and renal, hindquarters and mesenteric blood flows, resulting in a 100% survival at 2 h. The action was accompanied by approximately a 26% increase in extracellular histamine concentration at the posterior hypothalamus, as measured by microdialysis. Cardiovascular effects mediated by CDP-choline were almost completely blocked by pretreatment with H1 receptor antagonist chlorpheniramine (50 nmol; i.c.v.), but not with H2 receptor blocker ranitidine (25 nmol; icv) or H3/H4 receptor antagonist thioperamide (50 nmol; i.c.v.). In conclusion, the present results show that the central histaminergic system, through the activation of H1 histaminergic receptors, is involved in CDP-choline-induced resuscitating effect in haemorrhage-shocked rats.
EN
The aim of the study were to aswer the question 1.) Whether circulating pro-inflammatory markers of endothelial dysfunction and due to chronic low-grade inflammation of obesity, are altered in untreated lean, young relatively healthy polycystic ovary syndrome (PCOS) patients in comparison with healthy controls; 2.) Whether postprandial plasma concentration pattern of ghrelin and PYY can be predictable as risk factors for atherosclerosis and depend of obesity. Forty young women with PCOS were divided in two groups: 19 lean and 21 obese. The control group included 20 lean, healthy volunteers. Plasma total and active ghrelin, total PYY and PYY3-36, serum adiponectin and insulin were measured using RIA technique, serum sCD40L, visfatin, sP-, sE-selectins, resistin by EIA. Composition of test meal was: 527 kcal total and consisted of 24.1% fat, 54.4% carbohydrate and 21.5% protein. Total and active ghrelin and total PYY were significantly lower in obese PCOS women, whereas active ghrelin was also significantly lower in lean PCOS women compared to controls. Postprandial plasma total ghrelin levels decrease were blunted in lean and obese compared to controls (12.8 % and 18.2% vs 28.2 %). Postprandial plasma active ghrelin decreased in lean and obese PCOS groups (49.9 % and 44.1 %) and controls (63.8 %). PCOS subjects exhibited smaller rises in postprandial levels of total PYY. Postprandial plasma PYY3-36 levels increased in obese PCOS women (30.9 %) and controls (41%), whereas lean PCOS women exhibited blunted increase (11.5%). sCD40L levels increased, whereas adiponectin decreased in PCOS groups independently, whereas rise in visfatin, sE- and sP-selectin and the fall in adiponectin was associated with obesity. sP- and sE -selectins correlated positively with obesity. In summary, our study provides the first evidence that lean untreated young PCOS women contribute to the so called "pancreatic islet adaptation to insulin resistance" because of ghrelin and PYY profiles. We confirmed existing of low-grade chronic inflammation in early stage of visceral obesity in lean PCOS patients. The lost endogenous "islet adaptation to insulin resistance" may lead to endothelial dysfunction and promote acceleration of atherosclerosis.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.