Two operator-valued Fourier multiplier theorems for Hölder spaces are proved, one periodic, the other on the line. In contrast to the $L^{p}$-situation they hold for arbitrary Banach spaces. As a consequence, maximal regularity in the sense of Hölder can be characterized by simple resolvent estimates of the underlying operator.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.