Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Electrocardiography is an examination performed frequently in patients experiencing symptoms of heart disease. Upon a detailed analysis, it has shown potential to detect and identify various activities. In this article, we present a deep learning approach that can be used to analyze ECG signals. Our research shows promising results in recognizing activity and disease patterns with nearly 90% accuracy. In this paper, we present the early results of our analysis, indicating the potential of using deep learning algorithms in the analysis of both onedimensional and two–dimensional data. The methodology we present can be utilized for ECG data classification and can be extended to wearable devices. Conclusions of our study pave the way for exploring live data analysis through wearable devices in order to not only predict specific cardiac conditions, but also a possibility of using them in alternative and augmented communication frameworks.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.