Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Weak Type Inequality for the Square Function of a Nonnegative Submartingale
100%
|
|
nr 1
81-89
EN
Let f be a nonnegative submartingale and S(f) denote its square function. We show that for any λ > 0, $λℙ(S(f) ≥ λ) ≤ π/2 ∥f∥₁$, and the constant π/2 is the best possible. The inequality is strict provided ∥f∥₁ ≠ 0.
2
Content available remote Weak-type inequalities for maximal operators acting on Lorentz spaces
100%
|
|
nr 1
145-162
EN
We prove sharp a priori estimates for the distribution function of the dyadic maximal function ℳ ϕ, when ϕ belongs to the Lorentz space $L^{p,q}$, 1 < p < ∞, 1 ≤ q < ∞. The approach rests on a precise evaluation of the Bellman function corresponding to the problem. As an application, we establish refined weak-type estimates for the dyadic maximal operator: for p,q as above and r ∈ [1,p], we determine the best constant $C_{p,q,r}$ such that for any $ϕ ∈ L^{p,q}$, $||ℳ ϕ||_{r,∞} ≤ C_{p,q,r}||ϕ||_{p,q}$.
3
Content available remote A Note on the Burkholder-Rosenthal Inequality
100%
|
|
tom 60
|
nr 2
177-185
EN
Let df be a Hilbert-space-valued martingale difference sequence. The paper is devoted to a new, elementary proof of the estimate $∥∑_{k=0}^{∞} df_k∥_p ≤ C_p {∥(∑_{k=0}^{∞} 𝔼 (|df_k|²| ℱ_{k-1}))^{1/2}∥_p + ∥(∑_{k=0}^{∞} |df_k|^p)^{1/p}∥_p},$ with $C_p = O(p/lnp)$ as p → ∞.
4
Content available remote Sharp Logarithmic Inequalities for Two Hardy-type Operators
100%
|
|
tom 63
|
nr 3
237-247
EN
For any locally integrable f on ℝⁿ, we consider the operators S and T which average f over balls of radius |x| and center 0 and x, respectively: $Sf(x) = 1/|B(0,|x|)| ∫_{B(0,|x|)} f(t)dt$, $Tf(x) = 1/|B(x,|x|)| ∫_{B(x,|x|)} f(t)dt$ for x ∈ ℝⁿ. The purpose of the paper is to establish sharp localized LlogL estimates for S and T. The proof rests on a corresponding one-weight estimate for a martingale maximal function, a result which is of independent interest.
5
100%
|
|
nr 8
1198-1213
EN
We study sharp weak-type inequalities for a wide class of Fourier multipliers resulting from modulation of the jumps of Lévy processes. In particular, we obtain optimal estimates for second-order Riesz transforms, which lead to interesting a priori bounds for smooth functions on ℝd. The proofs rest on probabilistic methods: we deduce the above inequalities from the corresponding estimates for martingales. To obtain the lower bounds, we exploit the properties of laminates, important probability measures on the space of matrices of dimension 2×2, and some transference-type arguments.
6
Content available remote Sharp Ratio Inequalities for a Conditionally Symmetric Martingale
100%
|
|
tom 58
|
nr 1
65-77
EN
Let f be a conditionally symmetric martingale and let S(f) denote its square function. (i) For p,q > 0, we determine the best constants $C_{p,q}$ such that $sup_n 𝔼 (|fₙ|^p)/(1+Sₙ²(f))^q ≤ C_{p,q}$. Furthermore, the inequality extends to the case of Hilbert space valued f. (ii) For N = 1,2,... and q > 0, we determine the best constants $C'_{N,q}$ such that $sup_n 𝔼 (fₙ^{2N-1})(1+Sₙ²(f))^q ≤ C'_{N,q}$. These bounds are extended to sums of conditionally symmetric variables which are not necessarily integrable. In addition, we show that neither of the inequalities above holds if the conditional symmetry is not assumed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.