Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Kaldi Toolkit in polish whispery peech ecognition
100%
EN
In this paper, the automatic speech recognition task has been presented. Used toolkits, libraries and prepared speech corpus have been described. The obtained results suggest, that using different acoustic models for normal speech and whispered speech can reduce word error rate. The optimal training steps has been also selected. Thanks to the additional simulations it has been found that used corpus (over 9 hours of normal speech and the same of the whispery speech) is definitely too small and must be enlarged in the future.
PL
W artykule przedstawiono automatyczne rozpoznawanie mowy. Wykorzystane narzędzia, biblioteki i korpus opisano w artykule. Uzyskane wyniki wskazują, że wykorzystując różne modele akustyczne dla mowy zwykłej i szeptanej uzyskuje się polepszenie skuteczności rozpoznawania mowy. W wyniku wykonanych badań wskazano również optymalną kolejność kroków treningu. Dzięki dodatkowym obliczeniom stwierdzono, że użyty korpus (ponad 9 godzin zwykłej mowy i drugie tyle szeptu) jest zdecydowanie za mały do dobrego wytrenowania systemu rozpoznawania mowy i w przyszłości musi zostać powiększony.
2
Content available remote Acoustic model training, using Kaldi, for automatic whispery speech recognition
86%
EN
The article presents research on the automatic whispery speech recognition. The main task was to find dependences between a number of triphone classes (number of leaves in decision tree) and the total number of Gaussian distributions and therefore, to determine optimal values, for which the quality of speech recognition is best. Moreover, it was found, how these dependences differ between normal and whispery speech, what was not done earlier, and this is the innovative part of this work. Based on the performed experiments and obtained results one can say that the number of triphone classes (number of leaves) for whispered speech should be significantly lower than for normal speech.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.