The paper introduces a comprehensive investigation in end winding inductances of large two-pole turbo-generators. With the aid of an analytic-numeric approach, where Neumann's formula is applied, the influence of geometric characteristics of double-layer stator end windings with involute shape is analysed. This parameter study results in approximation formulas for the stator self and mutual inductances at stand level as well as for the common used end winding leakage inductance. In order to consider field affecting components as pressure plate, flux shield, rotor shaft and rotor retaining ring, finite elements models for two machines (250 MVA and 1150 MVA) are created and computed. The results are integrated in the developed approximation formulas. Finally the simulation results of machine 1 are compared to the data of two different measurements. All approaches introduced in this paper show good correlation. The high speed of the analytic-numeric calculation is combined with the accuracy and opportunity to consider field affecting components within the extensive finite element computation successfully.
Long transmission lines have to be compensated to enhance the transport of active power. But a wrong design of the compensation may lead to subsynchronous resonances (SSR). For studies often park equivalent circuits are used. The parameters of the models are often determined analytically or by a three-phase short-circuit test. Models with this parameters give good results for frequencies of 50 Hz and 100 Hz resp. 60 Hz and 120 Hz. But SSR occurs at lower frequencies what arises the question of the reliability of the used models. Therefore in this publication a novel method for the determination of Park equivalent circuit parameters is presented. Herein the parameters are determined form time functions of the currents and the electromagnetic moment of the machine calculated by transient finite-element simulations. This parameters are used for network simulations and compared with the finite-element calculations. Compared to the parameters derived by a three-phase short-circuit a significant better accuracy of simulation results can be achieved by the presented method.
Przesył mocy biernej w sieci elektroenergetycznej jest niezbędny do funkcjonowania urządzeń zasilanych napięciem przemiennym jednak wpływa on niekorzystne na parametry jej pracy. Jednym ze sposobów ograniczenia tego wpływu jest instalacja urządzeń do kompensacji mocy biernej. Moc tych urządzeń ustalana jest najczęściej na podstawie obciążenia szczytowego sieci, tak aby spełnione zostały wymagania w zakresie dyrektywnego współczynnika mocy tg. Często moc takich źródeł mocy biernej jest stała, z zatem nie jest dostosowywana do zmian obciążenia sieci. W dolinie obciążenia przy braku tzw. kompensacji nadążnej może wystąpić problem przekompensowania co wpływa na poziomy napięć sieci zasilających. W artykule przedstawia się wybrane problemy kompensacji mocy biernej w sieci dystrybucyjnej. Przedstawiono przykłady i wyniki analiz ilustrujące wpływ sposobu kompensacji mocy biernej w sieci rozdzielczej na warunki pracy sieci elektroenergetycznej.
EN
In the paper, the selected problems of reactive power compensation in a distribution network are presented. Reactive power is indispensable for a proper functioning of alternating current devices. The negative influence of the transfer of reactive power on the working of an electric power system makes the electric power operators to reduce its consumption by determining the required value of the directive power factor in the consumer’s network. In order to meet the value of the directive factor, the consumers compensate the reactive power. If they decide to use the reactive power compensator for peak loads, it is likely that overcompensation will take place at low loads. In such cases, the load becomes a receiver of the reactive power. Such a load results in the increased voltage at the connection point even above the admissible levels. In the paper, the influence of the direction of change in the reactive power flow on the levels of voltage in an electric power system is analyzed.