Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
To investigate whether the fungicide Azoxystrobin improves the potential to maintain physio-biochemical functions, tomato plants were grown under either well-watered and deficit irrigation conditions. Drought-stressed tomato plants showed significant reductions in cell membrane stability (CMS), relative water content (RWC), relative water loss (RWL) and chlorophylls, growth attributes and leaflet and main stem anatomical features, while exhibited increases in contents of proline and total phenols, activities of catalase (CAT), peroxidase (POD) and polyphenol oxidase (PPO), fresh (FW) and dry (DW) weights of roots, and leaflet spongy tissue thickness compared to well-watered control plants. Under full irrigation, Azoxystrobin treatment significantly increased RWC and chlorophyll content, POD and PPO activities, root DW, number of fruits per plant and many features of leaflet and main stem, while significantly decreased CMS and RWL, root, shoot and plant lengths, shoot and plant FW, and stem xylem tissue thickness compared to the control plants sprayed with water. However, Azoxystrobin treatment ameliorated drought stress in tomato plants and significantly increased CMS and free proline content, activities of CAT, POD and PPO, and contents of free and total phenols, and root DW and number of fruits per plant, in addition to spongy tissue thickness of leaflet, but not affected chlorophylls and carotenoids contents, root FW, plant DW and most of anatomical features compared to the stressed plants without Azoxystrobin treatment. These results support that Azoxystrobin foliar application may have a positive effect on well-watered and drought-stressed tomato plants.
EN
Pots experiment was carried out during season 2017 at greenhouse of the Agric. Bot. Dep., Fac. of Agric., Zagazig Univ., Egypt to evaluate the effect of glycine betaine (GB) application under salinity stress (50 and100 mM Nacl) on growth, physio-chemical analysis and yield of snap bean cv. Bronco. A complete randomized blocks design was used in this search with three replications. Growth parameters, chlorophyll content and green pod yield were significantly decreased with subjecting plants to NaCl. However foliar application of GB detoxified the stress generated by NaCl and significantly improved the above mention parameters. Salinity stress increased the electrolyte leakage (EL) and decreased membrane stability index (MSI) and relative water content (RWC). While foliar application of GB was improved MSI and RWC and minimized EL. Proline content and antioxidant enzymes significantly increased in the response to NaCl stress as well as GB application.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.