The valorization of sewage sludge, a by-product of wastewater treatment by anaerobic digestion (AD), is getting more attention as a result of the advantages it provides for the environment and economy. The current investigation is an experiment performed in a lab setting using a batch-operated anaerobic digestion reactor with a mesophilic temperature of 35°C. This study examined the generation of experimental biogas and biodegradability .The effect of pretreatment by methanogenic bacteria growth medium on anaerobic digestion of sewage sludge was studied on three different concentrations of growth media, a control, and a low, medium and high concentration of culture medium, with cumulative biogas production of 610N ml /gVS added, 750 N ml /gVS added, 900 N ml /gVS added, 10 N ml /gVS added, respectively, with biodegradability rate of 52.16%, 56.5%, 74.04%, 28.70% respectively. Biogas production was enhanced at a medium concentration of culture medium and inhibited at a high concentration during anaerobic digestion of sewage sludge. Additionally, a theoretical biogas estimate was evaluated using four kinetic models (Logistic function, Modified Gompertz, Transference function, and First order); which were utilized to match the experimental biogas generation process involving the anaerobic digestion of untreated and pretreated sewage sludge by various concentrations of growth media of methanogenic bacteria . The kinetic findings demonstrated that both models, Modified Gompertz and Logistic function, were useful for predicting biogas output and matched experimental biogas production.
Olive oil mill waste is characterized by its high organic matter content, especially fatty acids, polyphenols, sugars, and proteins. These nutrients can be used as a source of energy for biogas production. However, olive oil mill waste can also contain heavy metals such as lead, cadmium, copper, and zinc that can be absorbed by plants. In addition, very high concentrations of heavy metals can also inhibit the anaerobic digestion process by affecting the methanogenic bacteria involved in biogas production The aim of this research is to determine the composition of solid and liquid rejections from traditional and continuous three-phase crushing systems, by analyzing samples from different oil mills in the eastern region of Morocco. We also applied the technology of anaerobic digestion of solid and liquid waste forms of oil mills, to make a link between the biogas yield and the physicochemical characteristics of these wastes. The results suggest that traditional oil mill wastewater (Discontinuous OMWW) has high organic matter, nutrients, and heavy metals content and a low concentration of phenolic compounds, which can increase its biogas production potential with a production of 10.02 Nml/g VS, while three-phase wastewater (Continuous OMWW) has limited biogas production potential (3.83 Nml/g VS) due to the low organic matter and nutrients content, and high concentration of phenolic compounds. Three-phase olive pomace (Continuous OMSW) has a higher biogas production (9.28 Nml/ g VS) than traditional olive pomace (Discontinuous OMSW) with 5.91 Nml/g VS. In fact, the lower content of phenolic compounds and volatile fatty acids favors their anaerobic digestion and improves their biogas production. In conclusion, the selection of the type of waste adapted for biogas production must be based on the physicochemical and microbiological characteristics of these wastes.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.