Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The purpose of this paper is to present the results of a query aimed at assessing the validity of the topic of crankcase explosions prevention in the main marine engines. The study takes into account the engine type, engine manufacturer, ship’s age, accident severity, ship’s location at the time of the incident, and the share of fatal accidents in the analyzed population of crankcase explosions. One of the primary hazards associated with offshore and deep-sea ship operations – and primarily ship power plants – are fires and explosions that result in accidents and incidents with an average frequency of 60 days. This paper discusses the actuality of crankcase explosion hazards in the main propulsion engines of various types of sea vessels. The assessment was made based on the results of a statistical analysis of historical data from 1972 to 2018. The methodology consisted of three stages: (1) a selection query to obtain the source data, (2) analysis of the obtained results (data separation, extraction of additional information, and statistical analysis), (3) synthesis of the obtained information, and drawing conclusions about the numerical indicators describing the statistical distribution of individual events for the given evaluation criteria. The analysis showed that the risk of crankcase explosions affects ships of all ages – both in crosshead (31%) and trunk piston engines (61%) – and that the number of serious incidents (67%) remained constant over the investigated period. Half of all incidents occurred on vessels younger than 15 years old. 58% of explosions took place in engines of the most popular prime movers manufacturers. The probability that a main engine crankcase explosion will result in injury or death is 17.34%.
EN
This article aims to compile, describe and compare three different models taken from the literature describing the causes of explosions in the crankcases of marine engines. Each of the models has a different level of detail and was prepared with a different purpose. However, the same process, explosions in crankcases, was analyzed in all cases. A statistical evaluation of the frequency of events leading to explosions, a model built using failure mode and effects analysis (FMEA) and a model based on fault tree analysis (FTA) are described in turn. The FTA model drawn from the literature formed the basis for further analysis. Values of important measures of all elementary events of the fault tree were calculated using the Birnbaum reliability measure, Vesely-Fussell measure, Birnbaum structural measure, criticality measure and improvement potential. The percentage importance values of all events determined using these importance measures were compared. The results obtained from the application of each model were evaluated. The results of the models were compared with each other, and an approach using all three models supplemented with diversion analysis was proposed.
EN
Purpose: The key driver to discuss the topic is a research gap as regards the management of SPEs and TTCs in the innovation ecosystem. Design/methodology/approach: The article discusses a university innovation ecosystem in Poland. It also provides a comparative analysis of the functional management models in the innovation ecosystem with the coexistence of TTCs and SPEs with: 1) separated management functions, and 2) a personal union, i.e. the same person managing TTC and SPE. The following research methods have been used: a participatory observation, a focus group discussion to analyse the collected research material and draw conclusions. Findings: The article presents major benefits and risks for TTCs and SPEs, benefits and risks that are related to specific management models applied in entities responsible for technology transfer and commercialization. It is not possible to indicate which of the two TTC and SPE management models is better or more efficient, since advantages can be achieved with both of the models, provided specific conditions are met. Those advantages are mainly related to the cooperation with the social and business environment of a university. Research limitations/implications: The recommendations contribute to a further discussion on the role of TTCs and SPEs and their relations in the innovation ecosystem, as well as efficient management and assessment of technology transfer institutions. Practical implications: The article provides recommendations for dealing with those risks in each of models identified. Originality/value: The article fills a research gap as regards the management of SPEs and TTCs in the innovation ecosystem.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.