A new method using ultra-performance liquid chromatography (UPLC) in combination with tandem mass spectrometry and a multiple reaction monitoring mode (UPLC-MS/MS-MRM) was developed for simultaneous quantitative determination of anthraquinone derivatives in Radix et Rhizoma Rhei-based medicines. A multi-mode electrospray/chemical ionization (ESCI) and negative ion mode with [M-H]− and its fragments under collision-activated conditions were employed in MS/MS-MRM. The quantitative method was validated and applied to simultaneous determination of anthraquinone derivatives in 21 Radix et Rhizoma Rhei-based medicines. The limits of quantification were in the range of 3.90–9.09 ng mL -1. Average recoveries were between 95.5% and 99.8% with relative standard deviations from 1.8% to 5.3%.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
A high-performance liquid chromatographic (HPLC) technique coupled with photodiode array (PDA) detection has been proposed for simultaneous determination of five flavonoids, i.e. quercetin 3-O-β-D-glucopyranoside, quercetin 4′-methoxy-3-O-β-D-galactopyranoside, kaempferol 3-O-β-L-rhamnopyranoside, asebotin, and kaempferol 7-methxoy-3-O-α-L-rhamnopyranoside in extract of the whole plant of Saussurea mongolica Franch. The optimum conditions for separation were achieved on a 4.6 × 250 mm i.d., 5-μm particle, C18 column with acetonitrile and 1% acetic acid (20:80, v/v) as the mobile phase at a flow rate of 1.0 mL min−1. For all the analytes, a good linear regression relationship (r of >0.999) was obtained between peak area and concentration over a relatively wide range. The method was validated for repeatability, precision, stability, and accuracy. Seven different extraction procedures were investigated for preparation of the sample solution. The validated method was successfully applied to simultaneous analysis of these flavonoids in S. mongolica and was found to be simple and efficient.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
A high-performance liquid chromatographic (HPLC) method coupled with photodiode array (PDA) detection has been developed and validated for simultaneous analysis of six active components (syringin, hyperoside, baicalin, quercetin, baicalein, and farrerol) of the Chinese medicinal preparation Qin-Bao-Hong antitussive tablet. The optimum conditions for separation were achieved on a 3.9 mm × 150 mm i.d., 5-μm particle, C 18 column with a linear mobile phase gradient prepared from acetonitrile and 1% acetic acid at a flow rate of 1.0 mL min -1 . Because of the different UV characteristics of these compounds, four detection wavelengths were used for the quantitative analysis (265 nm for syringin, 256 nm for hyperoside and quercetin, 277 nm for baicalin and baicalein, and 296 nm for farrerol). For all the analytes a good linear regression relationship ( r > 0.999) was obtained between peak area and concentration over a relatively wide range. The method was validated for repeatability, precision, stability, accuracy, selectivity, and robustness. The validated method was successfully applied to simultaneous analysis of these active components in Qin-Bao-Hong antitussive tablet from different production batches.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
A high-performance liquid chromatography (HPLC) method has been developed for simultaneous determination of six alkaloids, i.e., (−)-(R)-platydesmin, noroxyhydrastinine, berberine, skimmianine, canthin-6-one, and pteleine in the herbal medicine of Phellodendron amurense Rupr. The optimal condition for extraction and separation was achieved with a linear mobile phase gradient prepared from 0.1% phosphoric acid and acetonitrile. The LODs and LOQs for the analytes ranged from 0.06 to 0.22 μg mL-1 and from 0.25 to 0.80 μg mL-1, respectively. The optimized method was applied to the determination of alkaloids in P. amurense Rupr. and was found to be efficient. This method can provide a scientific and technical platform to the manufacturers for setting up a quality control standard as well as to the public for quality and safety assurance of the proprietary traditional Chinese medicines.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
A simple and rapid method, using online ultraperformance liquid chromatography with photodiode array detection and electrospray ionization mass spectrometry (UPLC-PDA-eλ-ESI-MS/MS), was developed for the in-depth analysis of 50 batches Radix et Rhizoma Rhei. The analysis was performed on a UPLC BEH C18 column using a gradient elution system. Baseline separation could be achieved in less than 7.5 min. At the same time, on the basis of the 50 batches of samples collected from representative cultivated regions, a novel chromatographic fingerprint was devised by UPLC-PDA, in which 27 common peaks were detected and identified by the developed UPLC-MS/MS method step by step according to fragmentation mechanisms, MS/MS data, standards, and relevant literature. Many active components gave prominent [M - H]− ions in the ESI mass spectra. These components include anthraquinones, sennosides, stilbenes, glucose gallates, naphthalenes, and catechins. Furthermore, based on the information of these Radix et Rhizoma Rhei components, and further combined with discriminant analysis, a novel discriminant analysis equation (DAE) was established for the quality control of Radix et Rhizoma Rhei for the first time.
6
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
A novel liquid-phase microextraction (LPME) technique, based on a hollow fiber (HF), in conjunction with high-performance liquid chromatography, has been developed for analysis of melamine in milk products. Melamine was extracted directly from milk products by use of a hollow-fiber membrane filled with organic solvent. HFLPME conditions, for example pH, extraction solvent, temperature, stirring rate, and extraction time were optimized. The best extraction efficiency of melamine was achieved under the conditions: pH 9.5, 35 μL n -octanol as extraction solvent, temperature 55°C, stirring rate 300 rpm, and extraction time 30 min. The HF-LPME technique resulted in a preconcentration ratio of 29-fold. Baseline chromatographic separation of melamine was achieved on a C 18 column with 96:4 ( v / v ) 0.02 mol L -1 ammonium sulfate-methanol as isocratic mobile phase. The linearity of the method ranged from 1.0 to 100.0 μg mL -1, correlation coefficient 0.9994. The limit of detection by use of HF-LPME was 0.021 μg mL -1 at a signal-to-noise ratio of 3. The optimized HF-LPME technique was successfully applied to the analysis of melamine in milk products collected from different commodity manufacturing units.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.