Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This investigation focussed on the plasticity and swell-shrink behaviour of an expansive soil that was stabilized using electro kinetic stabilization (EKS) techniques with cationic fluids for enhancement of stabilization. 0.25 M solutions of calcium hydroxide and calcium chloride were used as cationic fluids. An electro kinetic (EK) cell of dimensions 500 mm x 150 mm x 160 mm with inert graphite electrodes of size 140 mm x 160 mm x 5 mm was adopted for the stabilization process, carried out at an applied voltage of 40 V over a period of 6 hours. After the duration of the test, stabilized soil sample was subjected to Atterberg limits and free swell tests to determine its plasticity and swell-shrink characteristics. The results of the investigation found that both fluids were capable of reducing the plasticity and swell-shrink behaviour of the soil with different levels of effectiveness.
PL
W badaniach skupiono się na plastyczności i kurczeniu się gleby, która została ustabilizowana za pomocą technik stabilizacji elektrokinetycznej (EKS) z płynami kationowymi. Jako płyny kationowe stosowano 0,25 M roztwory wodorotlenku wapnia i chlorku wapnia. Do procesu stabilizacji przyjęto ogniwo elektrokinetyczne (EK) o wymiarach 500 mm x 150 mm x 160 mm z obojętnymi elektrodami grafitowymi o wymiarach 140 mm x 160 mm x 5 mm, przy zastosowaniu napięcia 40 V przez okres 6 godzin. Po zakończeniu testu stabilizowaną próbkę gleby poddano testom Atterberga i badaniom swobodnego spęcznienia w celu określenia jego plastyczności i charakterystyki kurczenia się. Wyniki badania wykazały, że oba płyny były w stanie zmniejszyć plastyczność i kurczenie się gleby przy różnych poziomach skuteczności.
2
Content available remote Lime-stabilized solid-waste blends as alternative building blocks in construction
100%
EN
Stabilized blocks have been gaining ground in recent times. Stabilized solid waste blocks provide an eco-friendly alternative to conventional fired bricks. The present investigation dealt with the development of lime stabilized blended solid waste blocks comprising fly ash (FA), steel slag (SS) and phosphogypsum (PG). The PG content was limited to 10% and the proportion of FA:SS was varied in the remaining 90% in the ratios of 1:2, 1:1 and 2:1. The blends were stabilized using 2%, 4% and 6% lime. The blends were dry mixed, followed by the addition of a sufficient quantity of water to obtain a uniform wet mix. This mix was then packed into moulds to cast blocks. The blocks were demoulded after 24 hours under wet gunny bags and cured in water for 7 days. Similarly, the blends were also mixed with sand to prepare solid waste mortars blocks and cured for 7 days. At the end of their stipulated curing periods, the stabilized solid waste blocks and mortar blocks were tested for their compressive strength. The results of the investigation revealed that the mix LFSP621 developed the maximum strength of all combinations tested and hence, it can be concluded that the solid waste blend consisting of 60% FA, 30% SS and 10% PG stabilized with a further 6% lime by weight of the solid waste mix was the most optimal mix for developing maximum strength of the solid waste blocks. The mortar blocks, however, met with limited success. Thus, it can be concluded that stabilized solid waste blocks can become an effective alternative building material.
EN
The present investigation delved into the performance of cement stabilized soil amended with sugarcane press mud (PM), an organic waste residue from the sugar industry. An expansive soil was stabilized using 3% and 8% ordinary Portland cement (OPC) and modified with 1%, 3% and 5% PM. Cylindrical samples of dimensions 38 mm diameter and 76 mm height were cast and cured for 7, 14 and 21 days for all combinations considered. After the designated curing periods, the specimens were strained axially until failure to determine the strength of the samples. Samples were also subjected to alternate cycles of wetting and drying and the resistance to loss in weight was determined. The results of the investigation revealed that PM can be considered as a strength accelerator due to enhancement in early strength of the samples at 7 days of curing but beneficial strength gain could not be sustained over extended curing periods considered. However, 1% and 3% PM modified specimens were more resistant to weight loss when compared to pure cement stabilized specimens. Based on the results of the investigation, PM can be considered as a potential auxiliary additive to cement stabilized soil for improving the durability performance of the soil.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.