Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
100%
EN
In this study, we reveal the crystallography, crystallinity, and amorphization of low-dimensional crystals of the topological insulator and phase change material Sb₂Te₃ within both discrete and bundled single walled carbon nanotubes with a diameter range spanning 1.3-1.7 nm by a combination of electron diffraction, aberration-corrected high resolution imaging, and variable dose electron beam irradiation. We further reveal that electron diffraction indicates that the crystallinity of the host single walled carbon nanotubes is largely unaffected by this process indicating that mass loss during the observed in situ glass transition had not occurred and that the template had maintained its structural integrity. Such a transition would not be possible with any other common nanoporous template for which the pores would be enlarged due to likely sintering.
EN
The core-multishell wurtzite structure (In,Ga)As-(Ga,Al)As-(Ga,Mn)As semiconductor nanowires have been successfully grown on GaAs(111)B substrates using MBE technique. The nanowires cores were grown with gold eutectic catalyser in vapour-liquid-solid growth mode. The double shell overgrowth, on the side facets of nanowires, was performed using lower substrate temperature (about 400°C, and 230°C, for (Ga,Al)As, and (Ga,Mn)As shell growth, respectively). The polytypic ordering, defects, chemistry and geometric perfection of the core and the shells have been analysed at atomic level by advanced transmission electron microscope techniques with the use of axial and longitudinal section of individual nanowires prepared by focused ion beam. High quality cross-sections suitable for quantitative transmission electron microscope analysis have been obtained and enabled analysis of interfaces between the core and the shells with near atomic resolution. All investigated shells are epitaxial without misfit dislocations at the interface. Some of the shells thicknesses are not symmetric, which is due to the shadowing effects of neighbouring nanowires and directional character of the elemental fluxes in the MBE growth process.
EN
The Lorentz off-axis electron holography technique is applied to study the magnetic nature of Mn rich nanoprecipitates in (Mn,Ga)As system. The effectiveness of this technique is demonstrated in detection of the magnetic field even for small nanocrystals having an average size down to 20 nm.
EN
Two samples containing InGaN quantum wells have been grown by metal-organic vapor phase epitaxy on high pressure grown monocrystalline GaN (0001). Different growth temperatures have been used to grow the wells and the barriers. In one of the samples, a low temperature GaN layer (730°C) has been grown on every quantum well before rising the temperature to standard values (900°C). The samples have been investigated by transmission electron microscopy and X-ray diffraction. Photoluminescence spectra have been measured as well. The influence of the LT-GaN has been investigated in regard to its influence on the structural and compositional quality of the sample.
5
Content available remote Application of Graphics Processing Unit for In-Line Electron Holography
86%
EN
In the present work, software for exit electron wave reconstruction based on the iterative approach was implemented and a new method for drift-correction of the focal series was proposed.
EN
In this work we report on the atomic structures, elemental distribution, defects and dislocations of three types of semiconductor nanowires: ZnTe, CdTe, and complex ZnTe/(Cd,Zn)Te core/shell hetero-nanowires grown by a molecular beam epitaxy on (111) Si substrate using a vapor-liquid-solid mechanism. The structural properties and the chemical gradients were measured by transmission electron microscopy methods. The nanowires reveal mainly sphalerite structure, however wurtzite nanowires were also observed.
7
Content available remote Photoluminescence Properties of ZnO and ZnCdO Nanowires
58%
EN
We report on the photoluminescence studies of ZnO and ZnCdO nanowires grown on SiO_2/Si substrates by low-pressure vapor phase synthesis. X-ray diffraction and transmission electron microscopy measurements show that the crystallographic structure of these ZnO and ZnCdO nanowires is of wurtzite-type with a high crystal perfection. Surface morphology of samples was determined by scanning electron microscopy and atomic force microscopy. The photoluminescence spectra of as-grown nanowires, nanowires extracted from the substrate and deposited onto Si wafer, and nanowires dispersed in ethanol by sonication were investigated at room temperature and compared to each other. The temperature dependence of the near band-gap photoluminescence emitted by the as-grown nanowires was also measured and analyzed.
EN
We report on an approach to fabricate ZnTe-based core/shell radial heterostructures containing ZnO, as well as on some of their physical properties. The molecular beam epitaxy grown ZnTe nanowires constituted the core of the investigated structures and the ZnO shells were obtained by thermal oxidation of ZnTe NWs. The influence of the parameters characterizing the oxidation process on selected properties of core/shell NWs were examined. Scanning electron microscopy revealed changes of the NWs morphology for various conditions of the oxidation process. X-ray diffraction, high resolution transmission electron microscopy, and Raman scattering measurements were applied to reveal the presence of ZnTe single crystal core and polycrystalline ZnO-shell of investigated structure.
9
Content available remote Growth and Properties of ZnMnTe Nanowires
51%
EN
Catalytically enhanced growth of ZnMnTe diluted magnetic semiconductor nanowires by molecular beam epitaxy is reported. The growth is based on the vapor-liquid-solid mechanism and was performed on (001) and (011)-oriented GaAs substrates from elemental sources. X-ray diffractometry, scanning and transmission electron microscopy, atomic force microscopy, photoluminescence spectroscopy, and Raman scattering were performed to determine the structure of nanowires, their chemical composition, and morphology. These studies revealed that the obtained ZnMnTe nanowires possess zinc-blende structure, have an average diameter of about 30 nm, typical length between 1 and 2μm and that Mn^{2+} ions were incorporated into substitutional sites of the ZnTe crystal lattice.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.