Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The paper presents technology and results of measurements of the steel construction of the skylight of the Main Hall of the Warsaw University of Technology. The new version of the automated measuring system has been used for measurements. This system is based on Leica TCRP1201+ total station and the TCcalc1200 software application, developed by the author, which operates on a laptop computer connected with the total station by the wire. Two test measurements were performed. Each of them consisted of cyclic measurement using the polar method, from one station; points located on the skylight construction, as well as control points located on concrete, bearing poles, were successively measured. Besides geometrical values (such as Hz, V angles and the slope distance D), the changes of temperature and atmospheric pressure, were also recorded. Processed results of measurements contained information concerning the behaviour of the skylight; asymmetry of horizontal displacements with respect to the X axis have been proved. Changes of parameters of the instrument telescope and changes of the instrument orientation were also stated; they were connected with changes of the temperature. The most important results of works have been presented in the form of diagrams.
EN
Geodetic control measurements of changes in geometry an object should satisfy high accuracy and reliability. New techeometers equipped with Automatic Target Recognition automatically moves the telescope to the prism and supports control point measurements. The accuracy of using an ATR system and the stability of an instrument in precise measurements were present the results of monitoring measurement were controlled in laboratory and field conditions. This paper will present the results of monitoring measurements with a Leica TDA 5005 during the investigations of roof geometry in conditions of high temperature changes.
EN
Monitoring systems using automated electronic total stations are an important element of safety control of many engineering objects. In order to ensure the appropriate credibility of acquired data, it is necessary that instruments (total stations in most of the cases) used for measurements meet requirements of measurement accuracy, as well as the stability of instrument axis system geometry. With regards to the above, it is expedient to conduct quality control of data acquired using electronic total stations in the context of performed measurement procedures. This paper presents results of research conducted at the Faculty of Geodesy and Cartography at Warsaw University of Technology investigating the stability of “basic” error values (collimation, zero location for V circle, inclination), for two types of automatic total stations: TDA 5005 and TCRP 1201+. Research provided also information concerning the influence of temperature changes upon the stability of investigated instrument’s optical parameters. Results are presented in graphical analytic technique. Final conclusions propose methods, which allow avoiding negative results of measuring tool-set geometry changes during conducting precise deformation monitoring measurements.
6
63%
EN
Absolute horizontal displacements are an important element of dam safety level assessment. Appropriate design of measurement network is a prerequisite for the acquisition of displacement values that meet the reliability requirements. A network of this kind, apart from ensuring the required precision of displacement determination, should be characterised by reliability allowing for elimination of gross errors in the results of geodetic surveys. This study aims to propose a method to improve reliability characteristic of surveying network used for horizontal displacement identification in Zatonie dam. The desired effect (increase in the network’s reliability) is obtained by the authors in two stages. The first stage concerns expansion of the existing network by addition of three free stations. As the obtained effect did not prove to be satisfactory, in the second stage so called observation accuracy harmonisation was carried out, which optimally utilises the reliability potential of the measurement construction. In order to successfully carry out the harmonisation, a modification to the procedure’s algorithm had to be introduced. A design of a network ensuring detection of a gross error in any given observation was obtained as the result of the performed actions.
EN
Appropriate precision and low cost are the basic conditions that have to be fulfilled by a project of a geodetic network. Reliability, translating into the ability to detect gross errors in the observations and higher certainty of the obtained point position, is an important network characteristic. The principal way to provide appropriate network reliability is to acquire a suitably large number of redundant observations. Optimisation of the observation accuracy harmonisation procedure allowing for the acquisition of an appropriate level of reliability through modification of the observation a priori standard deviations is the focus of this study. Parameterisation of the accuracy harmonisation is proposed. Furthermore, the influence of the individual parameter operation on the effectiveness of the harmonisation procedure is tested. Based on the results of the tests an optimal set of harmonisation parameters which guarantees the maximal efficiency of the harmonisation algorithm is proposed.
EN
An optimally designed geodetic network is characterised by an appropriate level of precision and the lowest possible setup cost. Reliability, translating into the ability to detect blunders in the observations and higher certainty of the obtained point positions, is an important network characteristic. The principal way to provide appropriate network reliability is to acquire a suitably large number of redundant observations. This approach, however, faces limitations resulting from the extra cost. This paper analyses the possibility of providing appropriate reliability parameters for networks with moderate redundancy. A common problem in such cases are dependencies between observations preventing the acquisition of the required reliability index for each of the individual observation. The authors propose a methodology to analyse dependencies between observations aiming to determine the possibility of acquiring the optimal reliability indices for each individual observation or groups of observations. The suggested network structure analysis procedures were illustrated with numerical examples.
EN
Ubisense RTLS is one of the Indoor positioning systems using an Ultra Wide Band. AOA and TDOA methods are used as a principle of positioning. The accuracy of positioning depends primarily on the accuracy of determined angles and distance differences. The paper presents the results of accuracy research which includes a theoretical accuracy prediction and a practical test. Theoretical accuracy was calculated for two variants of system components geometry, assuming the parameters declared by the system manufacturer. Total station measurements were taken as a reference during the practical test. The results of the analysis are presented in a graphical form. A sample implementation (MagMaster) developed by Globema is presented in the final part of the paper.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.