This paper considers two competing methods intended to shorten lifetime tests. The first method, due to L.G. Johnson, is known in reliability engineering as "sudden death testing". Its competitor is a widely known time-terminated, right-censored test. Times of tests carried out according to these methods are set equal. Then, methods are compared in terms of variances and biases of lifetime parameter estimators. In addition, median, mode, skewness and kurtosis of estimator distributions are also calculated and compared. All data needed came from a large-scale Monte-Carlo numerical experiment.
Six tests for independence in a two-way contingency table namely chi-squared test, log likelihood ratio test, Neyman-modified chi-squared test, Kullback-Leibler test, Freeman-Tukey test, Cressie-Read test, were examined. It was accomplished with the Monte Carlo method. The Goodman-Kruskal τ index was used to fix dependence in two-way contingency table in Monte Carlo experiments. The examination consisted in determining power functions of the tests. Next, the power functions were compared to each other. It was revealed that differences in power are negligible.
PL
W artykule zbadano sześć testów niezależności dla tablic dwudzielczych, do których należą: test chi-kwadrat Pearsona, test największej wiarygodności, test Neymana, test Kullbacka-Leiblera, test Freemana-Tukeya, test Cressiego-Reada. Dokonano tego metodą Monte Carlo. Wyniki są do siebie podobne. Na wyróżnienie zasługują test chi-kwadrat Pearsona oraz test Cressiego-Reada. Można uznać, że jakość tych dwóch testów (wyrażona w funkcji mocy) jest porównywalna, ale lepsza od pozostałych. Index τ Goodmana-Kruskala wykorzystano do badania zależności w tablicach dwudzielczych za pomocą eksperymentów Monte Carlo.