Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available Pomiar preferencji z wykorzystaniem triad
100%
|
|
nr 468
239-247
PL
Metoda triad zaliczana jest do podstawowych metod porządkowania preferencji konsumenckich. Jest ona jednak bardzo rzadko stosowana w praktyce. Przyczyny tego należy upatrywać przede wszystkim w pracochłonności metody. Wyrażenie przez respondentów ocen podobieństwa dla k n C zestawów trzech par (n – liczba obiektów) jest uciążliwe, zwłaszcza gdy jednocześnie analizowanych jest wiele obiektów. Celem pracy jest wskazanie możliwości skalowania preferencji w oparciu o zredukowaną liczbę triad. Przeprowadzono analizę sprawdzającą, czy (a jeżeli tak to w jakim stopniu) redukcja liczby triad wpływa na ostateczne wyniki badań. Wykorzystanie metody triad zilustrowano przykładem empirycznym, w którym obliczenia i prezentację wyników przeprowadzono z wykorzystaniem programu TRISOSCAL dostępnym w pakiecie NewMDSX.
2
Content available DISTANCE MEASURES IN AGGREGATING PREFERENCE DATA
100%
|
|
nr 302
EN
The aim of this paper is to present aggregation methods of individual preferences scores by means of distance measures. Three groups of distance measures are discussed: measures  which use preference distributions for all pairs of objects (e.g. Kemeny’s measure, Bogart’s measure), distance measures based on ranking data (e.g. Spearman distance, Podani distance) and distance measures using permissible transformations to ordinal scale (GDM2 distance). Adequate distance formulas are presented and the aggregation of individual preference by using separate distance measures was carried out with the use of the R program.
3
100%
|
|
nr 322
PL
Skalowanie dynamiczne jest zbiorem metod, w których dokonuje się geometrycznej prezentacji danych podobieństw uzyskanych dla T różnych okresów. Celem artykułu jest przedstawienie zastosowania dwóch metod skalowania dynamicznego do badania zmian zachodzących w preferencjach. W pierwszej, rozmieszczenia punktów na mapie percepcyjnej dokonuje się na podstawie rozbudowanej macierzy podobieństw. W drugiej metodzie przeprowadza się skalowanie wielowymiarowe dla poszczególnych okresów, a następnie dopasowuje otrzymane konfiguracje punktów za pomocą przekształceń zachowujących proporcje odległości między punktami. Prezentacja metod zostanie zilustrowana przykładem empirycznym, w którym obliczenia przeprowadzono z wykorzystaniem pakietów SPSS i New MDSX.
EN
Dynamic scaling is a set of methods in which the geometrical representation of the similarity data for T different time periods is made. This article presents the use of two-dynamic scaling methods for studying changes in the preferences. In the first method the location of points on the perceptual map is made on the basis of the super-dissimilarity matrix. In the second method multidimensional scaling for the respective periods is carried out and the obtained configurations are matched by transformations preserving the proportions of distances between points. The presentation of the methods is illustrated by an empirical example in which calculations were performed with use of SPSS and New MDSX packages.
|
|
tom 23
|
nr 3
185-198
EN
The measurement of preferences can be based on historical observations of consumer behaviour or on data describing consumer intentions. In the latter case, the measure-ment of preferences is performed using methods which express consumer attitudes at the time of research. However, most of these methods are very laborious, especially when a large number of objects is tested. In such cases incomplete analyses may prove useful. An incomplete analysis involves the division of objects into subgroups, so that each pair of objects appears at exactly the same frequency and all objects are in each subgroup. The purpose of the work is to compare two incomplete methods for measuring the similarity of preferences, i.e. the triad method and the tetrad method. These methods can be used whenever similarities are measured on an ordinal scale. They have been com-pared in terms of their labour intensity and ability to map the known structure of ob-jects, even when all pairs of objects in subgroups cannot be presented equally frequent-ly.
|
2017
|
tom 4
|
nr 330
PL
W metodzie triad dla zbioru n obiektów respondentom przedstawiane są wszystkie możliwe trójelementowe zestawy obiektów. Dla każdego zestawu respondent jest proszony o wskazanie, zgodnie ze swoimi preferencjami, pary obiektów najbardziej podobnych oraz pary obiektów najmniej podobnych. Mimo wielu zalet metoda triad nie jest często stosowana w praktyce. Liczba triad jest sześcienną funkcją liczby obiektów i rośnie bardzo szybko wraz ze wzrostem liczby obiektów. Celem pracy jest wskazanie możliwości skalowania preferencji w oparciu o zredukowaną liczbę triad. Zbadano także, czy zmiana zredukowanego zbioru triad wpływa na wyniki skalowania. Wyniki analizy zilustrowano empirycznym przykładem, w którym skalowanie preferencji dla różnych zbiorów triad przeprowadzono za pomocą programu TRISOSCAL.
EN
In the method of triads for a set of n objects all three element sets of objects are presented to the respondents. A respondent is asked to pick out the most similar and the least similar pair. The method of triads, despite its numerous advantages, is rarely used in practice. The number of triads is a cubic function of the number of objects and increases very rapidly with the number of objects. The aim of the study is to indicate the possibility of scaling preferences based on the reduced number of triads. It has also been examined whether the change of reduced set of triads influences the results of the scaling. The results of the analysis are illustrated by an empirical example in which pref­erence scaling for different sets of triads was performed with the use of TRISOSCAL program.
EN
The aim of this paper is to propose and present adaptations of unfolding analysis for symbolic data. In the article, the basic terms of unfolding analysis and symbolic data are presented. The paper presents two approaches – the internal hybrid approach and the external symbolic-numeric approach. In the empirical part, the external symbolic-numeric unfolding for LCD brands is presented. Symbolic multidimensional scaling R source codes were written by authors.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.