We give an example of a compact set K ⊂ [0, 1] such that the space ℇ(K) of Whitney functions is isomorphic to the space s of rapidly decreasing sequences, and hence there exists a linear continuous extension operator $L: ℇ(K) → C^{∞}[0,1]$. At the same time, Markov's inequality is not satisfied for certain polynomials on K.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Given a probability measure μ with non-polar compact support K, we define the n-th Widom factor W²ₙ(μ) as the ratio of the Hilbert norm of the monic n-th orthogonal polynomial and the n-th power of the logarithmic capacity of K. If μ is regular in the Stahl-Totik sense then the sequence $(W²ₙ(μ))_{n=0}^{∞}$ has subexponential growth. For measures from the Szegő class on [-1,1] this sequence converges to some proper value. We calculate the corresponding limit for the measure that generates the Jacobi polynomials, analyze the behavior of the corresponding limit as a function of the parameters and review some other examples of measures when Widom factors can be evaluated.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We consider a compact set K ⊂ ℝ in the form of the union of a sequence of segments. By means of nearly Chebyshev polynomials for K, the modulus of continuity of the Green functions $g_{ℂ∖K}$ is estimated. Markov's constants of the corresponding set are evaluated.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.